DESCRIPCIÓN DE LOS NIVELES DE ARGUMENTACIÓN Y LA RELACIÓN CON LOS MODELOS EXPLICATIVOS DE LOS CONCEPTOS DE TRABAJO Y ENERGÍA EN LOS ESTUDIANTES DE GRADO DÉCIMO EN LA INENSEBEL

GENTIL ANACONA ORDOÑEZ

UNIVERSIDAD AUTÓNOMA DE MANIZALES
FACULTAD DE ESTUDIOS SOCIALES Y EMPRESARIALES
MAESTRÍA EN ENSEÑANSA DE LAS CIENCIAS
MANIZALES
2019
DESCRIPCIÓN DE LOS NIVELES DE ARGUMENTACIÓN Y LA RELACIÓN CON
LOS MODELOS EXPLICATIVOS DE LOS CONCEPTOS DE TRABAJO Y ENERGÍA
EN LOS ESTUDIANTES DE GRADO DÉCIMO EN LA INENSEBEL

GENTIL ANACONA ORDOÑEZ

Proyecto de grado para optar al título de Magister en Enseñanza de las ciencias

Tutor
Dr. Wilman Ricardo Henao Giraldo

UNIVERSIDAD AUTÓNOMA DE MANIZALES
FACULTAD DE ESTUDIOS SOCIALES Y EMPRESARIALES
MAESTRÍA EN ENSEÑANSA DE LAS CIENCIAS
MANIZALES
2019
RESUMEN

La presente investigación buscó determinar los niveles de argumentación y su relación con los modelos explicativos de los conceptos de trabajo y energía en estudiantes de grado décimo. Para ello se utilizó un enfoque cualitativo descriptivo mediante la aplicación de un cuestionario con 15 preguntas a 35 estudiantes de grado décimo, que fue evaluado mediante dos modelos explicativos: el tradicional y de indagación. Los resultados demostraron que para el concepto de trabajo el modelo más usado por los estudiantes fue el cotidiano con tres cuartas partes del total de las declaraciones categorizadas, dicho modelo es el más evidente e intuitivo, iguales resultados fueron observados en el concepto de energía. Finalmente se corrobora un bajo nivel explicativo por parte de los estudiantes, ya que carecen de razones para defender afirmaciones diferentes a lo que su realidad les presenta. Sin embargo, la invitación al estudiante a exponer sus razones de manera argumentada, lo lleva a buscar otras explicaciones a los fenómenos, lo que contribuye en gran medida a mejorar el cambio en sus modelos explicativos.

**Palabras Claves:** Educación, física, modelo, secundaria
ABSTRACT

The present investigation sought to determine the levels of argumentation and its relationship with explanatory models of the concepts of work and energy in tenth grade students. To do this, a descriptive qualitative approach was used by applying a questionnaire with 15 questions to 35 tenth grade students, which was evaluated using two explanatory models: the traditional and the inquiry. The results showed that for the concept of work the model most used by the students was the daily one with three quarters of the total categorized statements, this model is the most evident and intuitive, the same results were observed in the concept of energy. Finally, a low explanatory level is corroborated by the students, since they lack reasons to defend statements different from what their reality presents them. However, the invitation to the student to present his reasons in a reasoned way, leads him to look for other explanations to the phenomena, which contributes greatly to improve the change in their explanatory models.

Keywords: Education, model, physics, secondary
# CONTENIDO

1. INTRODUCCIÓN ................................................................................................. 10
2. ANTECEDENTES .................................................................................................. 13
3. PREGUNTA DE INVESTIGACIÓN ...................................................................... 15
4. JUSTIFICACIÓN .................................................................................................... 16
5. REFERENTE TEÓRICO ........................................................................................ 18
   5.1 Estado del arte .................................................................................................. 18
   5.2 La argumentación en Ciencias ....................................................................... 25
   5.3 Niveles de argumentación .............................................................................. 27
   5.4 Modelos explicativos de los conceptos de trabajo y energía. ......................... 32
      5.4.1 Modelo tradicional ..................................................................................... 32
      5.4.2 Aprendizaje por indagación ...................................................................... 32
      5.4.3 Relación de la historia y la epistemología de los conceptos de trabajo y energía 36
6. OBJETIVOS ............................................................................................................ 39
   6.1 Objetivo General .............................................................................................. 39
   6.2 Objetivos Específicos ...................................................................................... 39
7. METODOLOGÍA .................................................................................................... 40
   7.1 Introducción .................................................................................................... 40
   7.2 Enfoque y alcance de la investigación ............................................................. 40
   7.3 Contexto de la investigación .......................................................................... 40
   7.4 Unidad de Trabajo .......................................................................................... 41
   7.5 Categorías de Análisis .................................................................................... 42
   7.6 Diseño Metodológico ...................................................................................... 43
   7.7 Fases del proceso metodológico .................................................................... 43
   7.8 Plan de Análisis .............................................................................................. 44
8. RESULTADOS ........................................................................................................ 45
   8.1 Presentación de Resultados, Análisis y Discusión ............................................ 45
8.2 Identificación de los niveles de argumentación en los estudiantes del grado décimo
45
8.3 Caracterización de los modelos explicativos de los estudiantes en función de los
conceptos de trabajo y energía. ................................................................................... 52
8.4 Análisis comparativo de los niveles argumentativos respecto al modelo
explicativo....................................................................................................................... 64
9. CONCLUSIONES ..................................................................................................... 68
10. RECOMENDACIONES ............................................................................................ 70
11. REFERENCIAS ........................................................................................................ 71
12. ANEXOS .................................................................................................................. 79
LISTA DE TABLAS

Tabla 1. Niveles de argumentación de Toulmin.................................................................28
Tabla 2. Niveles de argumentación de Osborne, Erduran y Simon..................................29
Tabla 3. Niveles de argumentación de Tamayo 2012 .........................................................30
Tabla 4. Escala de valoración de nivel de un argumento, propuesto por Ruíz (2015)...........31
Tabla 5. Modelo argumentativo de Toulmin........................................................................34
Tabla 6. Modelos argumentativos .......................................................................................35
Tabla 7. Categorías de análisis ...........................................................................................42
Tabla 8. Resultado de los niveles de argumentación en el análisis textual preliminar de los estudiantes ...............................................................................................................46
Tabla 9. Respuesta, análisis y clasificación del nivel 1 de argumentación ............................48
Tabla 10. Respuesta, análisis y clasificación del nivel 2 de argumentación .........................50
Tabla 11. Ideas previas clasificadas en el modelo esfuerzo ...............................................53
Tabla 12. Ideas previas clasificadas en el modelo cotidiano ...............................................55
Tabla 13. Ideas previas clasificadas al modelo vitalista ......................................................58
Tabla 14. Ideas previas clasificadas al modelo fuente ........................................................60
Tabla 15. Relación de los niveles de argumentación y los modelos explicativos del concepto de trabajo ..............................................................................................................65
Tabla 16. Relación de los niveles de argumentación y los modelos explicativos del concepto de energía .................................................................................................................66
LISTA DE FIGURAS


Figura 3. Relación porcentual entre los niveles de argumentación en el análisis textual preliminar de los estudiantes. ........................................................................................................... 45

Figura 4. Porcentaje de respuestas relacionadas al modelo de esfuerzo. .................. 54

Figura 5. Porcentaje de respuestas relacionadas al modelo de Cotidiano. ............... 56

Figura 6. Porcentaje de respuestas asociadas a los modelos de esfuerzo y cotidiano. 57

Figura 7. Porcentaje de respuestas relacionadas al modelo de Vitalista. ................... 59

Figura 8. Porcentaje de respuestas relacionadas al modelo de Fuente. ...................... 61

Figura 9. Porcentaje de respuestas asociadas a los modelos vitalista y fuente.......... 62
LISTA DE ANEXOS

Anexo 1. *Instrumento de exploración de ideas previas.* ................................................................. 79
1. INTRODUCCIÓN

La experiencia docente tanto en el colegio secundario como en la Universidad muestra que los alumnos presentan confusiones conceptuales cuando tratan de explicar con sus conocimientos de Física y Química fenómenos de la vida cotidiana.

D. Ausubel citado en Zamorano, et al, (s.f) menciona que, de todos los factores que influyen en el aprendizaje, el más importante consiste en lo que el alumno ya sabe. Lo que se debe averiguar y enseñar consecuentemente. A partir de esta corriente entendemos que los alumnos poseen un caudal previo de conocimientos que afecta de modo fundamental sus procesos de aprendizaje. ¿Cómo averiguamos lo que el alumno ya sabe? A fin de generar un aprendizaje significativo necesitamos identificar los conceptos inclusivos que el alumno ya posee.

Cuando pensábamos que los alumnos llegaban a nosotros con una mente en blanco, que eran una tabla rasa en la cual escribir, dispuesta a interiorizar nuestras enseñanzas; enseñábamos en consecuencia: con un modelo de transmisión, donde la mente del estudiante era una página en blanco y aprender ciencias era asimilar contenidos (para una descripción de modelos de enseñanza y aprendizaje ver Jiménez, 2000), Reconocer que los alumnos llegaban al aula con modelos explicativos sobre los fenómenos naturales y aceptar la dificultad para modificar o sustituir esos modelos durante la enseñanza nos brindó una nueva visión sobre cómo debería abordarse la enseñanza de las ciencias. Los profesores y profesoras llegan al aula con propuestas para explicar los fenómenos que se han generado desde la ciencia erudita; los alumnos, con explicaciones de sentido común. ¿Cómo transitar entre ambos discursos?, Uno de los retos es el diseñar actividades que promuevan la evolución de los modelos explicativos de los alumnos y comprender los procesos que llevan a dicha evolución.

Para Posada (s.f) las ideas previas se entienden como las nociones que los alumnos traen consigo antes del aprendizaje formal de una determinada materia. Los currículos suelen ser cíclicos y en años sucesivos se abordan los mismos conceptos con un grado de profundidad progresivo. Esto ha llevado a generalizar la noción de ideas previas a todas aquellas concepciones que tienen los estudiantes con anterioridad a cualquier tipo de enseñanza, ya
sea básica o superior. La forma que tenemos de conocer las ideas previas es a través de las respuestas que dan los estudiantes a cuestiones planteadas. No cabe duda que un buen conocimiento de esas concepciones, por parte de los investigadores y profesores dedicados a la innovación curricular, aportaría una valiosísima herramienta que ayudaría a determinar qué actividades son necesarias para la adecuada asimilación de ciertos conceptos. Esta tarea es más fácil de enunciar que de llevar a la práctica, ya que las concepciones de los alumnos suelen tener una lógica interna diferente a la de la ciencia.

En este trabajo nos aproximaremos al análisis de la actividad en el aula centrada en el diseño y el desarrollo de actividades didácticas que buscan establecer puentes entre las ideas previas de los estudiantes y sus modelos explicativos, además se hace un sondeo acerca del nivel de argumentación en el cual están los alumnos. Inicialmente, se revisará algunos aportes sobre ideas previas, para continuar con el análisis del trabajo en el aula y de los mediadores didácticos. Cabe aclarar que esta no es una revisión exhaustiva sobre el tema, sino que pretende iluminar algunos aspectos de interés con la finalidad de motivar a los investigadores e investigadoras jóvenes a adentrarse en el diseño y análisis de actividades innovadoras insertas en la complejidad del trabajo en el aula.

A lo largo del trabajo se mostrará la importancia de la concepción de las ideas previas para establecer los niveles de argumentación en los que se encuentran los alumnos y la relación que con los modelos explicativos que asumirá el docente, se dedicará una primera parte en la identificación de la teoría, y en una segunda parte en lo respectivo a las ideas previas, la argumentación y los modelos explicativos, teniendo en cuenta las investigaciones relacionadas con el tema principal, para una tercera parte se desarrollará una encuesta que hace parte del diseño de este trabajo la cual servirá para identificar las ideas previas que los alumnos tienen sobre los conceptos de trabajo y energía, esta se convertirá en la característica más importante para establecer en la investigación lo significativo que tienen el conocimiento de las ideas previas, esto producirá una interacción entre los conocimientos que posee el alumno y las nuevas informaciones que el docente compartirá en cada clase, se mostrarán los datos resultantes de la investigación con sus respectivas representaciones gráficas y explicaciones, lo que deriva en unas reflexiones a manera de conclusiones y
recomendaciones procedentes de la articulación de la teoría, y las reflexiones realizadas por los autores investigados y desde el propio resultado del estudio realizado.
2. ANTECEDENTES

Hoy en día la enseñanza de la física se hace desde los docentes de ciencia que con un orden y la utilización de métodos de trabajo realizan una variedad de actividades escolares, para que los estudiantes logren experiencias significativas en el aprendizaje, los docentes concentran su esfuerzo en la construcción, interpretación y análisis conceptual de los temas que permitan que los alumnos se apropien de ellos, el objetivo principal del docente es que el alumno no solo mantenga una relación con el docente y el cumulo de conocimientos teóricos, la enseñanza va más allá y la meta es que estos referentes conceptuales se mantengan en el tiempo y los pueda no solamente relacionar sino utilizar y aplicar en las numerosas situaciones de la vida cotidiana, y con este saber poderlo comunicar también de manera asertiva y precisa hacia los demás.

En la actualidad es importante conocer el papel que desarrolla el alumno en el proceso educativo, son escasas las investigaciones destinadas a conocer en profundidad las ideas previas de un tema determinado que el alumno posee, por lo tanto no se ha podido determinar la correlación que estas tiene con los objetivos que debe asimilar, lo cual permite saber que existe una falla en el sistema educativo, exclusivamente en ambientes de educación en el área de las ciencias como es la Física, es preocupante para los docentes y en sí para el sistema educativo no lograr llenar el vacío de enseñanza-aprendizaje que aún existe en los colegios. Las ideas previas de los estudiantes no han sido consideradas importantes para desarrollar un modelo explicativo que ayude a mejorar continuamente el aprendizaje y que haga parte de un motor con el cual el estudiante se sienta protagonista de su formación.

Igualmente, aunque hay planificación de las clases y cumplimiento con el pensum propuesto al inicio del año lectivo, este cumplimiento es mecánico, centrado en la cantidad más que en la calidad, dando mayor importancia a los resultados y dejando de lado la innovación en los modelos explicativos y los niveles de argumentación, con un bajo nivel de aplicabilidad en el contexto del estudiante, por lo tanto las destrezas adquiridas por los estudiantes, no satisfacen las necesidades básicas de aprendizaje.
Debe tenerse en cuenta que un modelo explicativo según la opinión de Galagovsky y Aduriz (2001) cercano a la ciencia contiene la articulación de un gran número de hipótesis de un altísimo nivel de abstracción referentes a un cierto campo problemático de la realidad. Hay que reconocer que los estudiantes tienen diferentes estilos de aprendizaje, igual que tienen diferentes personalidades. Por ejemplo, hay individuos que prefieren el aprendizaje visual, otros el auditivo, el verbal etc. Los estudiantes deben aprender de sí mismos cuáles son sus preferencias con el fin de mejorar su proceso de aprendizaje y convertirse en estudiantes más eficientes. 

Por ello se debe tener en cuenta que los conocimientos previos sobre un tema determinado, poseen una gran relevancia dentro de la educación porque influyen efectivamente en el aprendizaje, ya que las concepciones que tienen los estudiantes se pueden emplear de manera eficiente para que el docente desarrolle un modelo explicativo con el cual pueda impartir su conocimiento y el estudiante tenga una asimilación conceptual y un desarrollo de la temática desde una óptica distinta con el propósito final de ampliar el saber y lograr la interpretación de lo trascendente de los diversos temas.
3. **PREGUNTA DE INVESTIGACIÓN**

Entonces, para enfrentar la problemática señalada, se plantea el siguiente problema de investigación:

¿Cuál es la relación entre los niveles de argumentación y los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra Señora de Belén?
4. JUSTIFICACIÓN

La situación en la INENSEBEL apunta, entre otras cosas, a la promoción eventual de individuos con pobre capacidad de argumentar, criticar y proponer dentro y fuera del aula de clases, individuos desinteresados y con poca visión de lo que pasa en el mundo, enfrascados en vivir su propia realidad y limitados a su contexto, derrochando las posibilidades y las bondades tecnológicas ofrecidas como alternativas para mejorar la calidad de vida de las personas. Es evidente que se está frente a las aberraciones del siglo XXI donde las generaciones tienen una concepción errónea de lo que es la actualidad, supuestamente los jóvenes viven “actualizados” porque manipulan y tienen acceso a algunas tecnologías de la información y la comunicación (internet, telefonía celular, y otros dispositivos).

La tecnología está generando importantes impactos en la educación: el libro como herramienta de aprendizaje así lo fue en su momento, de la misma manera que la tiza y la pizarra tuvieron su gran impacto en la manera en cómo los maestros enseñaban a sus alumnos.

Hoy en día los esquemas educativos también están cambiando, las soluciones tecnológicas han causado una importante revolución en la manera de aprender de los estudiantes, y por extensión la metodología de enseñanza también se va adaptando a las nuevas motivaciones e intereses. Se puede especular que el uso indiscriminado de estas herramientas tecnológicas genera entre los jóvenes ocio y dependencia, así como la adopción de modismos y regionalismos propios de otras latitudes que alteran de manera determinante sus formas de pensar, hablar, vestir y sentir, dejándolos vulnerables a la pérdida de la identidad como fenómeno emergente.

Hoy se reconoce con cierta modestia que las ciencias no son un corpus de descripciones y explicaciones de los fenómenos del mundo no problematizables, incontrovertibles y objetivos. Por el contrario, las prácticas de los científicos, como los planteamientos de alternativas, las formulaciones de hipótesis, el diseño de experimentos o los análisis de resultados, hacen parte de prácticas discursivas a través de las cuáles se construye el conocimiento. En este proceso las teorías están abiertas a cambios y el trabajo se realiza a
través de la discusión, la controversia, la generación de nuevos modelos explicativos de los fenómenos de la realidad, de aquí que el presente trabajo intente explorar, investigar y proponer una serie de estrategias que permitan fortalecer la expresión oral y la escucha, de tal manera que favorezcan el desarrollo de la competencia argumentativa en los estudiantes de décimo grado, de la Institución Educativa Nuestra Señora de Belén.

El desarrollo de este proyecto tendrá un impacto entre los estudiantes y profesores de todos los niveles académicos de la Institución así también en el ámbito local, ya que el conocer las ideas previas es trascendental en el desarrollo de los diversos enfoques desde didáctico – pedagógicos, social, cultural y cognitivo que puedan posibilitar a los alumnos de una manera integral, así como en el desarrollo de su pensamiento, las habilidades para aprender, y la construcción de conocimientos relevantes para la vida; promoviendo su avance, desde los planteamientos de los propios protagonistas del proceso es decir de quienes aprenden y enseñan las ciencias.
5. REFERENTE TEÓRICO

5.1 Estado del arte

La importancia de los niveles de argumentación previos en el proceso educativo, ha sido estudiada extensamente por diversos investigadores en todas las disciplinas del saber, encontrándose muchos textos que dan ejemplo de la relevancia del tema en la historia, a continuación se mostrarán algunas de las investigaciones aportadas por sus autores y que se utilizaran de base para desarrollar este proyecto.

Cademártori y Parra citado por Archila (2012) reconocen que si se fomenta en la escuela la falibilidad del conocimiento científico, esto contribuirá en la imagen de los estudiantes hacia la posibilidad de rectificar sus propias ideas, así como a favorecer la generación de un ambiente de aprendizaje más crítico. En apoyo a esta idea Stipich et al. citado en Archila (2012) resaltan la necesidad de formar docentes de ciencias que conozcan las características más importantes de la dinámica que es propia de la construcción de conocimiento en ciencia (entre ellas, la relevancia de argumentaciones dentro de la comunidad), a fin de brindarle herramientas al futuro profesor para que logre en sus estudiantes la construcción de una imagen de ciencia contraria a una ciencia acabada e incuestionable en donde el debate no tiene lugar.

Es así como la concepción de los argumentos y premisas de los estudiantes de acuerdo con el autor se convierten en una fuente importante de dinamismo en las clases ya que aportaran un sentido crítico contundente del estado de saber en el que se encuentra el estudiante y a partir del cual el profesor debe comprometer sus conocimientos a formar un nuevo saber sobre el estudiante pero ya fundamentado en la ciencia.

De esta manera, para que las clases de ciencias sean espacios de argumentación los profesores deben, como lo indican Buitrago et al. (2013) convertirse en actores cruciales para implementarlas, deben orientar sus acciones para que los estudiantes construyan una visión del conocimiento científico como la construcción de teorías científicas erigidas a partir de argumentos, con el fin de sacar conclusiones aceptables partiendo de la investigación. En este sentido, hay que tener presente que la calidad de los argumentos de
los estudiantes viene condicionada por la estimulación que reciben para involucrarse en una práctica de discusión reflexiva Kuhn citado en Buitrago et al. (2013). Para lo cual en el ambiente escolar se deben plantear y generar con las argumentaciones expuestas una serie de discusiones las cuales llevaran a conclusiones colectivas mediante las cuales se podrá desarrollar una ciencia basada hechos reales y su relación con el saber científico.

En algunos trabajos realizados por Kuhn citado en Buitrago et al. (2013) la argumentación fue interpretada como una herramienta favorable para el desarrollo cognitivo de los estudiantes; se parte del estudio de su naturaleza con el fin de comprender qué la estimula y cómo se desarrolla. Se implementa, entonces, un currículo que estimula la argumentación dialógica de los estudiantes, evidenciando que se requiere, además de los contextos escolares, que se propicie su desarrollo. Concebir la argumentación como una habilidad, al igual que un concepto científico, tiene su propia progresión de aprendizaje, como lo anotan Corcoran et al. citados en Archila (2012).

De acuerdo con lo expuesto por los anteriores autores la argumentación estimula la capacidad del saber con el propósito firme de aprender desde la premisa, para llegar a un conocimiento fundamentado, en las aulas se debe ayudar al estudiante a manifestar lo que ya sabe para que el profesor establezca la enseñanza con el fin de que el alumno llegue a comprender el tema.

Desde este punto de vista Henao y Stipcich (2008) indican la relevancia especial de la argumentación. De un lado hacer ciencia implica discutir, razonar, argumentar, criticar y justificar ideas y explicaciones; y, de otro, enseñar y aprender ciencias requiere de estrategias basadas en el lenguaje, es decir, el aprendizaje es un proceso social, en el cual las actividades discursivas son esenciales. Se reconoce aquí una estrecha relación entre las competencias comunicativas y el aprendizaje de los modelos científicos y se arriesga la hipótesis de que a una mejora en dichas competencias corresponde un aprendizaje de mayor calidad; y que aprender a pensar es aprender a argumentar.

Así mismo, los niveles argumentativos de los alumnos han de generar transformaciones en el aprendizaje del estudiante, y en consecuencia han de transformar la enseñanza en el futuro de las generaciones. Se evidencian cambios mentales en los alumnos, ya que
manifestaran cuanto saben sobre un tema, y no solo eso podrán manifestar su capacidad de desarrollar experimentos físicos y químicos y lograrán entender el porqué de la importancia de la ciencia.

En su teoría evolutiva sobre las ciencias Toulmin citado en Henao y Stipcich (2008), señala que, aunque nuestros pensamientos son de índole individual y personal, nuestra herencia lingüística y conceptual, por medio de la cual ellos se expresan, es propiedad pública. En el mismo sentido, considera el devenir de las ciencias como un proceso plural, dinámico y comunal de interacción de teorías explicativas, en el cual la argumentación, como externalización de razonamientos sustantivos, se constituye en la expresión de una racionalidad local y contingente que permita muchos cambios.

En relación con lo anterior, más allá de un procedimiento heurístico y de una estrategia analítica, es posible ver en la propuesta Toulminiana sobre la argumentación, un proceso que permite la construcción social y negociación de significados, en tanto, dinámica de dialogo en el cual, para sostener una aseveración, conclusión o punto de vista, debemos: exponer razones, recibir preguntas cruzadas sobre la fuerza y relevancia de esas razones, enfrentar objeciones y, quizás, modificar o matizar una afirmación o punto de vista inicial Toulmin, Rieke y Janik citado en Henao y Stipcich (2008). Se debe enfatizar que el proceso de enseñanza y el aprendizaje identificado como un proceso de argumentación, va más allá del trabajo basado en esquemas y patrones de tipo algorítmico (Henao & Stipcicch 2008). La construcción social como lo propone el anterior autor se basa en la argumentación y en la comunicación que tenemos en todas las formas individuales, colectivas, grupales, etc. Es un dialogo permanente de saberes que se trasmiten a diario, de los cuales muchos no tienen fundamentos, es ahí donde el docente se incorpora con su ciencia para colaborar con su conocimiento a entender el porqué de muchas situaciones de la vida diaria.

El pensamiento crítico tiene como componente el reconocer determinante la incorporación de la dimensión del lenguaje y especialmente la argumentación. El estudio de lenguaje y argumentación se ha constituido en una línea importante de investigación para la ciencia (Tamayo, Zona y Loaiza, 2015). En este aspecto Duschl y Osborne citado en Tamayo, Zona y Loaiza (2015) destacan la importancia de desarrollar investigaciones que permitan que los estudiantes se acerquen desde sus aulas de clase a las formas de trabajo científico propias
de las comunidades académicas, dentro de las que se destacan de manera especial las referidas a los múltiples usos del lenguaje y la argumentación.
El alumnado tendrá como base de conocimiento la argumentación, porque se considera como un saber crítico, una reflexión propia; este conocimiento empírico es una destreza elaborada, el cual el docente lo convertirá en un punto de conexión con el verdadero significado de la ciencia.
Van Dijk citado en Tamayo, Zona y Loaiza (2015) sostiene que la estructura del texto argumentativo puede ser descompuesta más allá de la hipótesis (premisas) y la conclusión, e incluye la justificación, las especificaciones de tiempo y lugar y las circunstancias en las que se produce la argumentación. Para él, lo que define un texto argumentativo es la finalidad que este tiene de convencer.
Por ello el propósito de los docentes, es realizar una clase más social, didáctica y acorde a las situaciones presentadas en el contexto, el estudiante por su parte será vital en el desarrollo de la clase, sus argumentaciones tendrán validez y al final lo aprendido tendrá aplicabilidad en el espacio-tiempo.
Siguiendo con el principal objetivo de este trabajo también es necesario conocer el propósito de establecer un modelo explicativo conociendo de ante mano los niveles de argumentación de los estudiantes, para ello es necesario conocer las diferentes aportaciones de autores y sus investigaciones.
Según Concari (2001) los modelos no se pueden considerar una explicación de la realidad física. Representar no es describir, ni tampoco es explicar, pero las representaciones pueden ser vistas como medios para comprender y conocer. Un modelo es concebido como una representación posible de una cosa o evento. En general, esa representación es incompleta, aproximada e inexacta, pero es más simple que ella. Como las analogías, los modelos “mapean” la estructura de diferentes dominios, por lo que frecuentemente modelo y analogía se utilizan como sinónimos (modelo planetario del átomo, por ejemplo). En esta presentación, nos referimos a un modelo cuando pensamos en una representación de un objeto o evento en general, y a modelo analógico cuando el modelo hace referencia a otro objeto o evento equivalente en otro dominio, y con el cual presenta similitud estructural. En estos últimos, las relaciones analógicas forman las bases del modelo.
El anterior texto nos hace reflexionar que los modelos didácticos se han vuelto teóricos, son confusos e inconvenientes, de allí que se debe implementar estrategias para innovar el aprendizaje en clase, se hace necesario entonces interactuar con el estudiante conocer sus premisas, sus niveles de argumentación de los diferentes temas, las motivaciones, dialogar en fin conocer el punto de vista. Es importante para establecer un correcto modelo explicativo la comunicación entre el docente y el estudiante.

Al respecto Orrego, López, Tamayo (2013) indican que los estudios pioneros realizados sobre los modelos mentales desde la didáctica de las ciencias estuvieron orientados a conocer cuáles eran las representaciones internas que tenían los alumnos en dominios específicos del conocimiento, tanto los que hacían referencia a conocimientos de orden intuitivo como los adquiridos mediante la enseñanza. En la actualidad la orientación básica en el estudio de los modelos mentales reside en comprender cuál es el proceso de construcción y de cambio de esas representaciones, qué clases de procesos determinan su uso y cuáles son los procesos mentales que permiten su creación, lo cual implica reconocerlas, saber cómo están representadas en su mente, cómo son usadas por los sujetos para su razonamiento y cómo son empleadas por los profesores en función del logro de aprendizajes significativos en sus estudiantes.

De modo que se trata de que el profesor oriente a su estudiante a conseguir un conocimiento científico con la interacción en la clase, usando situaciones cotidianas presentadas en el contexto; aplicando la ciencia con el dominio del tema que ya sabe el estudiante y transformándolo, moldearlo a las nuevas situaciones y ampliar el conocimiento hacia nuevos horizontes.

Según Aduriz, Galagovsky (2001) el concepto de modelo es uno de los pilares metateóricos sobre los que se edifican las ciencias naturales. Este referente tiene que ver en su argumentación de la didáctica de la ciencia como disciplina autónoma, cuyas teorías son explicables desde los modelos científicos, en esa misma perspectiva coincide Gallego (2004) cuando plantea su propia propuesta de modelo para estudio de la comunidad científica.

Es fundamental como lo expresan los autores basarse en un modelo para explicar la ciencia, y sobre todo para explicar la ciencia partiendo de un contexto, de una idea ya formada de
entre generaciones. El maestro tiene la tarea por consiguiente buscar a partir de esta premisa explorar y hacer un arreglo necesario para motivar al estudiante y promover la comprensión del conocimiento, realizar un cambio en el conocimiento y convertirlo en conocimiento científico.

Lombardi (2000) establece una tríada entre modelos, epistemología e historio-grafía, como punto de vista cardinal en las investigaciones sobre didáctica de la ciencia. Se plantea, entonces, la necesidad de contextualizar los conceptos científicos dentro del marco teórico de su formulación, como también complementar la enseñanza de los contenidos disciplinares con una reflexión epistemológica acerca de la propia actividad científica, en fin, para Lombardi el papel central de la noción de modelos atenuaría la perspectivas epistemológicas e históricas acríticas.

Además de su intencionalidad descriptiva, los modelos han sido empleados como estrategia de enseñanza y de aprendizaje, lo cual ha conducido a una fructífera línea de investigación denominada, en términos generales, enseñanza y aprendizaje basado en modelos (Gilbert & Boulter, 2000; Clement & Rea-Ramirez, 2008; Nersessian 2008), la cual tiene como propósito central lograr aprendizajes en profundidad en los estudiantes (Franco & Colinvaux, 2000; Gilbert, et al., 2000), determinar la validez de modelos expresados y lograr mejores comprensiones de los modelos históricos en los diferentes campos del saber a través de la enseñanza (Gilbert Bou et al., 2000). El uso de los modelos con estos fines se constituye en una estrategia para la cualificación de la enseñanza de las ciencias, la cual podría potenciarse a través de la identificación de los obstáculos frente al aprendizaje como puente entre los modelos mentales y las actividades de enseñanza (Tamayo, Orrego y Dávila, 2014).

En términos generales el docente debe basar su enseñanza en un modelo explicativo, que logre en el estudiante conocer para el futuro, comprender el tema, reflexionar sobre lo aprendido y razonar con lo conocido, el modelo explicativo basado en la argumentación de los estudiantes promoverá la ciencia del saber y se impondrá la importancia del estudiante como autor de su propio conocimiento.

En este trabajo se busca la relación entre los niveles de argumentación y los modelos explicativos como lo dicen los criterios propuestos por Pozo y Gómez (1998) para
seleccionar los modelos que se utilizan en el aula como es el caso de la investigación Tamayo, Orrego y Dávila (2014), modelos explicativos de estudiantes acerca del concepto de respiración, donde exponen muy concienzudamente algunos modelos que proponen los estudiantes para asimilar dicho concepto optan por aquellos que tienen mayor capacidad de generalización, mayor poder argumentativo o explicativo y estructuras conceptuales más complejas e integradas.

Los niveles de argumentación de los estudiantes deben suponer un cumulo de conocimiento, son ellos los que propondrán el modelo a seguir, porque ya tienen en su saber una comprensión del tema, sus argumentaciones lograrán establecer en qué nivel de sapiencia se encuentran, y la enseñanza venidera será a partir de su propio saber pero ya remasterizado en un nuevo modelo explicativo.

El enfoque basado en modelos que hace hincapié que el proceso de modelización se puede desarrollar a través de diferentes actividades. Algunos autores describen estas actividades y entre ellas destacamos las que incorporan los modelos en la investigación científica de los estudiantes (Khan, 2007; Windschitl & Thompson, 2006). En ellas los estudiantes construyen modelos que les permiten interpretar y predecir los resultados que surgen de una investigación científica, logrando sofisticar sus ideas anteriores.

Es esencial que los estudiantes aprendan a hacer ciencia, es decir que los estudiantes sean capaces de crear, expresar y comprobar sus propios modelos (Justi y Gilbert, 2002). Cuando los estudiantes expresan sus modelos a los demás, fijan la atención en aspectos destacados del modelo y pueden realizar interconexiones con otros argumentos (Oh & Oh, 2010).

Las interconexiones de las que habla el anterior autor permiten al estudiante trabajar con las exposiciones de los otros, ósea de forma grupal, porque la enseñanza debe ser de forma grupal, en un entorno social de investigación, así la comunicación será de importancia crucial para poder refutar o exaltar situaciones cotidianas, complejas pero que a luz de la ciencia y con un enseñanza basada en un modelo explicativo didáctico se comprenderán mejor, se harán más simples.
Es importante que el profesor presente múltiples representaciones de modelos a los estudiantes, ya que de esta forma, fomenta el aprendizaje efectivo de ellos (Oh y Oh, 2010).

Se hace relevante entonces que el docente ayude al estudiante a construir un conocimiento real, pasando los obstáculos y limitaciones de los individuos que confunden los conceptos y generan afectaciones en el aprendizaje de manera correcta. Al descubrir los argumentos propios o conceptos erróneos, el docente precisará realizar un trayecto pertinente, con el propósito de establecer unas características de enseñanza efectiva y dinámica, lo que permitirá que el estudiante haga una comparación de su conocimiento con lo real y aplicable y pueda transformar el concepto inicial y así lograr un aprendizaje efectivo para enfrentar el futuro de las ciencias.

5.2 La argumentación en Ciencias

Actualmente se está de acuerdo en que, en la construcción del conocimiento científico, es importante el proceso de negociación que tiene lugar entre los miembros de la propia comunidad cuando se comunican modelos y teorías con la finalidad de validar representaciones sobre el mundo (Sutton, Duschl 1997; Samarti Izquierdo y García 1999). En este proceso, el razonamiento interviene de manera fundamental como instrumento para relacionar las observaciones experimentales con los modelos teóricos existentes (Jimenez, 1998). Podríamos afirmar que el discurso de las ciencias se va elaborando entre el racionalismo y la retórica de la argumentación, en un proceso que es necesario entender como continuado (Sardá & Sanmartí, 2000).

Sardá & Sanmartí, 2000 manifiestan que “de la misma manera que en la construcción del conocimiento es importante la discusión y el contraste de las ideas y que el lenguaje inicial tiene unas características diferentes del final, también será necesario dar mucha más importancia en la construcción del conocimiento propio de la ciencia escolar, en la discusión de las ideas en el aula y en el uso de un lenguaje personal que combine los argumentos racionales y los retóricos, como paso previo, a menudo necesario, para que el lenguaje formalizado propio de la ciencia tome todo su sentido para el alumnado”.
Sería necesario entonces que el estudiante tenga un lenguaje comunicativo de los conocimientos que ya tiene de manera tal que pueda argumentar la idea y demostrar que tiene un dominio conceptual, este será avalado o refutado con el conocimiento científico que el docente enseñara al estudiante; el conjunto de conocimientos será el total para llegar al conocimiento científico.

En la investigación realizada por Ruiz, Tamayo y Márquez (2013) “una de las conclusiones desde el punto de vista conceptual dice que el principal logro en el aspecto fue la consolidación de la argumentación como un proceso social – dialogico, un proceso que le permite al docente evaluar aprendizajes en el aula. Este logro promovió en los docentes un cambio también en la intencionalidad de los procesos argumentativos, donde se paso de ver la argumentación como acción para informar a una acción para convencer y persuadir. Así mismo concluyen que uno de los cambios significativos logrados fue aceptar que la argumentación requiere, como criterio para su desarrollo, en el aula establecer relaciones entre el estudiante, el docente, el conocimiento y el contexto, y no solo criterios orientados al estudiante a su relación con el docente”.

Por lo anterior, para argumentar en el aula es necesario una red de relaciones, con las cuales en forma grupal los estudiantes puedan emitir una reflexión o un criterio que determine la validez o invalidez del concepto con ello pueden argumentar las ideas que tienen y hacer una interacción grupal en conjunto con el docente y así el docente podar mejorar el nivel de entendimiento de los conceptos científicos de las ciencias.

Héraud et al citado en Molina (2012) se basan en la semántica lógica para analizar como en las ambigüedades referenciales y los enunciados conocidos pueden permitir la construcción de conceptos científicos a partir de saberes comunes. Ellos muestran como el profesor utiliza los procedimientos argumentativos para ayudar a los alumnos a salir de la ambigüedad, a plantear sus interrogantes, todas condiciones necesarias para construir saberes científicos dentro del contexto escolar.

Por otra parte introducen otro aspecto de la cuestión: el de los valores que aportan los discursos científicos. Este es un tema fundamental en relación con las competencias que, se espera, cada alumno debe tener aprendidas al final de la escolaridad obligatoria a fin de
alcanzar su lugar como ciudadano autónomo y responsable dentro de la sociedad (Molina, 2012).

Bisault (citado en Molina, 2012) marca un ligero desplazamiento de la problemática y afirma que “no se trata de pensar cómo se materializan las características del pensamiento científico en la clase de ciencia, si no de analizar las prácticas en la clase de ciencia en referencia a las prácticas sociales de los investigadores, de los verdaderos productores de conocimiento científico”. Este desplazamiento abre nuevas perspectivas para la didáctica, al mismo tiempo que posiciona la argumentación como un objeto presente en todas las fases de la educación científica escolar.

En el aula de clase este proceso se evidenciaría a través de las prácticas discursivas de los estudiantes, en las que se articulan componentes de la estructura de la argumentación, de los conceptos científicos y de la práctica discursiva, cuya puesta en escena permitiría conocer las características de los modelos argumentativos y, a partir de allí, construir procesos didácticos que contribuyan a la transformación de dichos modelos.

5.3 Niveles de argumentación

Los primeros antecedentes de la investigación educativa sobre argumentación datan de mediados del siglo XX, cuando algunos autores comenzaron a plantear severas críticas a la lógica formal. Desde los tiempos de su fundador, el filósofo griego Aristóteles, la lógica había pretendido convertirse en una ciencia educativa comparable a la matemática. Sin embargo tal como han sostenido sus críticos, la tradición aristotélica ha supuesto una enorme simplificación respecto de la riqueza y complejidad del lenguaje ordinario. Las críticas más importantes a la lógica formal surgieron de los trabajos seminales de Stephen Toulmin y Chaim Perelman, quienes, además de dar origen a la teoría moderna de la argumentación, pueden considerarse los principales impulsores del movimiento de lógica informal, que significó una ruptura definitiva con la tradición aristotélica, al desplazar el interés hacia la retórica, el lenguaje natural y la argumentación dialógica (Pinochet, 2015). Rodríguez, (2004) concibe a la retórica epistémicamente como una forma de conocimiento que genera conocimiento, acuerdos y cambios conceptuales, señala que la creación de nuevos paradigmas no surge de revoluciones que ignoran las antiguas creencias y
concepciones. El paradigma involucra la lectura crítica de la realidad en un ambiente de competición en el que la verdad no se concibe como algo inmutable, sino contingente y creada tanto en un contexto retórico argumentativo como en uno histórico cultural. Toulmin (1992) distingue entre argumentos sustanciales y analíticos. En estos la conclusión no trasciende el contenido de premisas universales. En aquellos se infiere a partir de los datos del contexto. El razonamiento analítico es el formal y lógico usado por matemáticos y hombres de ciencia, basado en tesis preexistentes. El práctico, substancial, no se mide con base en criterios de corrección o validez, si no de relevancia o irrelevancia, fortaleza o debilidad.

Tabla 1.

*Niveles de Argumentación de Toulmin (2007)*

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>La argumentación consiste en argumentos que son solo una simple afirmación, o conclusión.</td>
</tr>
<tr>
<td>2</td>
<td>La argumentación tiene argumentos que constan de afirmaciones o datos y justificaciones pero sin refutaciones.</td>
</tr>
<tr>
<td>3</td>
<td>La argumentación tiene argumentos con una serie de afirmaciones, datos o respaldos y justificaciones con refutación débil ocasional.</td>
</tr>
<tr>
<td>4</td>
<td>La argumentación tiene argumentos con una serie de afirmaciones o datos, justificaciones o respaldos y garantías con refutación débil ocasional.</td>
</tr>
<tr>
<td>5</td>
<td>La argumentación muestra una amplia discusión con más de una refutación.</td>
</tr>
</tbody>
</table>

Fuente: adaptado de Toulmin (2007)

De esta forma Osborne et al., citado en Rodríguez, (2004), estudiando ambientes de aprendizaje que favorecieran la enseñanza de la argumentación en ciencias, propone una escala que permite la calificación de la calidad de la argumentación. Dicha escala consta de cinco niveles que incluyen los elementos definidos en el modelo argumentativo de Toulmin. A continuación se resume en la Tabla 2. La escala de los niveles propuestos.
Tabla 2.
Niveles de argumentación de Osborne, Erduran y Simon.

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Argumentación que consiste de argumentos que son conclusiones simples versus conclusiones o conclusiones versus conclusiones.</td>
</tr>
<tr>
<td>2</td>
<td>Argumentación que tiene argumentos que consisten en conclusiones, datos, garantías, o sustentos pero no contiene ninguna refutación.</td>
</tr>
<tr>
<td>3</td>
<td>Argumentación que tiene argumentos con una serie de conclusiones o contra conclusiones con cualquier dato, garantías, o sustentos con refutaciones débiles ocasionales.</td>
</tr>
<tr>
<td>4</td>
<td>Argumentación que muestra argumentos con una conclusión que tiene una refutación claramente identificable.</td>
</tr>
<tr>
<td>5</td>
<td>Argumentación que manifiesta un amplio argumento con más de una refutación.</td>
</tr>
</tbody>
</table>


Así, mismo Tamayo (2012), en su investigación concluye que dentro de los aspectos cognitivos en el proceso de elaboración de argumentos uno es de especial importancia: el conocimiento y control que se tiene sobre los propios procesos del pensamiento, conocido como metacognición determinante en el logro de aprendizajes profundos por parte de los estudiantes. En la Tabla 3. Se muestra los niveles de a argumentación de Tamayo.
**Tabla 3.**  
*Niveles de argumentación de Tamayo, 2012.*

<table>
<thead>
<tr>
<th>Niveles Argumentativos</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comprende los argumentos que son una descripción simple de la vivencia.</td>
</tr>
<tr>
<td>2</td>
<td>Comprende los argumentos en los que se identifican con claridad los datos (data) y una conclusión (claim).</td>
</tr>
<tr>
<td>3</td>
<td>Comprenden argumentos en los cuales se identifican con claridad los datos (data) y una conclusión (claim) y justificación.</td>
</tr>
<tr>
<td>4</td>
<td>Comprenden argumentos constituidos por datos, conclusiones y justificaciones (warrants), haciendo uso de cualificadores (qualifiers) o respaldo teórico (backing).</td>
</tr>
<tr>
<td>5</td>
<td>Comprenden argumentos en los que se identifican datos, conclusión(es), justificación(es), respaldo(s) y contraargumento(s).</td>
</tr>
</tbody>
</table>

Fuente: adaptado de Tamayo, 2012

Otros autores muestran la relevancia de los niveles de argumentación utilizados para realizar cambios conceptuales en las personas, es el caso de los autores Castaño, Ruiz y Cadavid (2016). A continuación se muestra en la tabla 4. La escala de niveles. Como lo muestra la investigación realizada por Castaño, Ruiz y Cadavid (2016) quienes ratifican la afirmación que promover las prácticas argumentativas en el aula de ciencias, conlleva reconocer que la argumentación además de ser una actividad social, puede cualificar los procesos de aprendizaje de los conceptos. En este sentido y teniendo en cuenta que los bajos niveles argumentativos identificados en los estudiantes están relacionados con modelos conceptuales alejados o incompletos de los modelos científicos (atmosférico – mecanicista), lo que consolida la idea de que al iniciar la enseñanza de un concepto, es necesario reconocer la estructura que de él tienen los estudiantes y diseñar las
estrategias más asertivas en una secuencia didáctica intervenirlo y adoptar aspectos de orden conceptual que enriquezcan sus argumentos.

**Tabla 4.**
*Escala de valoración de nivel de un argumento, propuesto por Ruiz (2015).*

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comprende argumentos que solo presentan una o más conclusiones o presentan datos.</td>
</tr>
<tr>
<td>2</td>
<td>Aquellos argumentos en los que se identifican con claridad los datos y una o más conclusiones, presentando poca o ninguna relación entre estos dos elementos.</td>
</tr>
<tr>
<td>3</td>
<td>Aquellos argumentos en los que se identifican con claridad los datos y una o más conclusiones, presentando relación fuerte entre ellos.</td>
</tr>
<tr>
<td>4</td>
<td>Argumentos en los que se identifican con claridad los datos, una o más conclusiones y al menos una justificación, que intenta relacionar los elementos anteriores.</td>
</tr>
<tr>
<td>5</td>
<td>Argumentos en los que se identifican con claridad los datos, una o más conclusiones y al menos una justificación que relaciona claramente los elementos anteriores.</td>
</tr>
<tr>
<td>6</td>
<td>Argumentos en los que se identifican con claridad los datos, conclusiones, justificaciones y/o refutaciones con coherencia entre dichos elementos.</td>
</tr>
<tr>
<td>7</td>
<td>Argumentos constituidos por datos, conclusiones, justificaciones y respaldo teórico, con coherencia entre dichos elementos.</td>
</tr>
<tr>
<td>8</td>
<td>Justificaciones, respaldos, contraargumentos y cualificadores, con coherencia entre dichos elementos.</td>
</tr>
</tbody>
</table>
5.4 Modelos explicativos de los conceptos de trabajo y energía.

Para el desarrollo de esta investigación se utilizaran los modelos asociados a la enseñanza de las ciencias en general, puesto que no se encontró bibliografía referente a modelos explicativos de manera explícita con respecto a los conceptos como tal de trabajo y energía, se incorporan el modelo de enseñanza tradicional del concepto de energía, el aprendizaje por indagación.

5.4.1 Modelo tradicional

La enseñanza tradicional desarrolla en los estudiantes, por separado: el contenido conceptual y las habilidades de investigación. Los conceptos se enseñan a través de exposiciones y la práctica científica se enseña con la adecuación de experimentos de laboratorio. Esto conduce a un aprendizaje superficial y pone en evidencia la memorización y la repetición de eventos. Como consecuencia de lo anterior, se orienta la enseñanza hacia una simple memorización y los estudiantes no pueden hacer uso del conocimiento cuando lo requieren. En general, la enseñanza tradicional de la física corresponde a formar en los estudiantes una colección memorística de conocimientos y eventos, pero no se enseñan habilidades de razonamiento y aprendizaje (Ackoff y Greenberg citado en Rubio Pinto, 2012).

5.4.2 Aprendizaje por indagación

Una de las tendencias pedagógicas opuesta a la tradicional es el aprendizaje por indagación. A diferencia de las clases tradicionales en las que se coloca al estudiante en función de la pasividad, el aprendizaje por indagación considera que el estudiante esté activo mientras aprende. Esta propuesta de enseñanza insiste en que los estudiantes indaguen sobre el contenido académico de las temáticas a través del estudio independiente, los reportes orales y escritos, las búsquedas en la biblioteca, los experimentos de laboratorio y el trabajo de campo. De tal manera que docente toma el papel como facilitador, organizador y asesor en el desarrollo de las clases. La enseñanza basada en la indagación se produce de tres maneras, estas se dan en forma continua: a) Indagación dirigida por el profesor. b) Profesores y estudiantes como co-investigadores. c) Indagación dirigida por los estudiantes.
Los estudiantes aprenden a aprender cuando desarrollan la observación, el razonamiento, el pensamiento crítico y la capacidad para justificar o refutar el conocimiento. Este proceso se da también porque se estimula la creatividad y la curiosidad, además de controlar su aprendizaje (Henson citado en Rubio Pinto, 2012).

Es necesario para este trabajo reconocer los avances de los investigadores en cuanto a modelos explicativos utilizados para enseñar ciencias teniendo en cuenta los noveles argumentativos, por lo tanto se citaran los más relevantes a tener en cuenta para el desarrollo de esta investigación.

El modelo de Toulmin profundizado en Toulmin, Rieke, and Janik (1984), se relaciona con las reglas de una argumentación en pasos que pueden ser precisados en cualquier tipo de disciplina o espacio abierto a la disertación, al debate. Mediante este modelo, los docentes pueden motivar a los estudiantes a encontrar la evidencia que fundamenta una aserción. Se aprende que la excelencia de una argumentación depende de un conjunto de relaciones que pueden ser precisadas y examinadas y que el lenguaje de la razón está presente en todo tipo de discurso (Rodríguez, 2004).

En el siguiente Tabla 5 se presentan los términos de Toulmin (1958), Toulmin, Rieke, and Janik (1984), en inglés, junto con la traducción de Gutiérrez.

**Figura 1.** El modelo argumentativo de Toulmin. Fuente: Buitrago, Mejía y Hernández (2013).
Tabla 5.

*Modelo argumentativo de Toulmin.*

<table>
<thead>
<tr>
<th>Toulmin</th>
<th>Traducción de Gutiérrez</th>
<th>Traducción de Rodríguez Bello</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Claim</strong></td>
<td>Pretensión</td>
<td>Aserción</td>
</tr>
<tr>
<td><strong>Data (Toulmin, 1958), Grounds (Toulmin, Rieke y Janik, 1984)</strong></td>
<td>Bases</td>
<td>Datos</td>
</tr>
<tr>
<td><strong>Warrants</strong></td>
<td>Justificación</td>
<td>Garantía</td>
</tr>
<tr>
<td><strong>Backing</strong></td>
<td>Respaldo</td>
<td>Respaldo</td>
</tr>
<tr>
<td><strong>Modal qualifiers</strong></td>
<td>Modalidad</td>
<td>Cualificadores modales</td>
</tr>
<tr>
<td><strong>Rebuttals</strong></td>
<td>Posibles refutaciones</td>
<td>Reserva</td>
</tr>
</tbody>
</table>

Fuente: adaptado de Rodríguez 2004.

También podríamos citar a Perelman y Olbrechts Tyteca citado en Fagúndez y Castells (2012), quienes incluyen esquemas argumentativos, la interacción entre los argumentos y la amplitud y el orden del discurso. Según tal teoría las estructuras argumentativas son solamente una parte de un argumento como un todo, y que también incluye las premisas y la tesis. Se considera argumento todo aquello que se ofrece, o todo lo que se utiliza, para justificar o para refutar una proposición. Las estructura argumentativas se categorizan en dos amplias categorías: los “procedimientos de enlace, asociación o de conexión”, que unen o enlanzan elementos, y los “procedimientos de la disociación o de separación”, que separan elementos, y así cambiando sistemas y nociones. Los “procedimientos de enlace” unen elementos distintos y permiten el establecimiento de una solidaridad entre ellos que pretende estructurarlos y valorarlos; y los de disociación, cuyo objetivo es separar elementos considerados componentes de una totalidad en un determinado sistema de pensamiento.

Para este estudio también es importante conocer sobre los modelos asociados a la argumentación de los autores como Grize, las de Kopperschmidt, Ducrot, entre otros. En el tabla 6 se muestran los modelos argumentativos de varios autores.

Tabla 6.

Modelos Argumentativos.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Soporte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grize/Vignaux (Suiza)</td>
<td>La lógica natural (que se opone a la formal)</td>
</tr>
<tr>
<td>Ducrot/Ascombe (Francia)</td>
<td>La lingüística (una retórica integrada)</td>
</tr>
<tr>
<td>Klein y kopperschmidt (Alemania)</td>
<td>La lógica con influencia de (Toulmin)</td>
</tr>
<tr>
<td>Van Eemerent y Grootendorst (Holanda)</td>
<td>La pragmadialéctica</td>
</tr>
<tr>
<td>Plantin (Francia)</td>
<td>La pragmática</td>
</tr>
<tr>
<td>Tony Blair, Douglas Walton, M. Gilbert y Otros (Canada)</td>
<td>La Lógica informal (en oposición a la formal)</td>
</tr>
</tbody>
</table>

Así es como los diversos autores con sus investigaciones muestran un interés particular en la argumentación, la cual se establece como primordial para conseguir un modelo explicativo que constituya un nuevo aprendizaje de las ciencias por parte de los estudiantes. En este mismo sentido, es importante destacar que todos los modelos no son completos y que tienen sus dificultades y a veces son complejos, pero han llegado a desarrollar una nueva forma de enseñar, de establecer relaciones entre lo que aprenden y lo que ya conocen.

Según Concari, (2001) la explicación y su comprensión por parte de los estudiantes pueden mejorarse a través del empleo de modelos adecuados. Proponemos como criterios de selección de los modelos que se utilizan para la enseñanza, aquellos que tengan mayor capacidad de generalización, mayor capacidad para resolver problemas de interés, mayor parsimonia y que al mismo tiempo ofrezcan la mayor significatividad potencial para el estudiante.

5.4.3 Relación de la historia y la epistemología de los conceptos de trabajo y energía

Hoy en día hemos tratado con diversas investigaciones que centran su atención en lo que el estudiante ya conoce, este componente incide de una manera elemental sobre lo que es capaz de asimilar. Son importantes por lo tanto las concepciones conceptuales diversas y merecen toda la atención de los investigadores.

Diferentes investigadores consideran a las concepciones epistemológicas entre las variables potencialmente relevantes para el aprendizaje comprensivo (Gil, 1993; Campanario et al., 2000), a punto tal que se señala que no sería posible construir conocimientos científicos al margen de una adecuada epistemología de la ciencia (Aikenhead, 1992). Distintos estudios vienen mostrando que los estudiantes mantienen visiones inadecuadas sobre la naturaleza del trabajo y el conocimiento científico (Ryan y Aikenhead, 1992; Vázquez & Manassero, 1995 citado en Wainmaier y Salinas, 2005).

En este sentido es pertinente hablar de investigaciones como las de Solbes y Tarín citado en Arboleda, Díaz y Aguilar, (2011) en las que indican que los estudiantes solo observan los cambios en cuanto fenómenos mecánicos (movimiento), dejando de lado la importancia de
otros fenómenos como los termodinámicos. En estas situaciones resulta problemática la relación que establecen entre los conceptos de trabajo, masa, transferibilidad, calor y fuerza, entre otros. En la relación de trabajo y energía, el trabajo se conceptualiza en términos de la energía y la energía en términos del trabajo, es decir, se plantea una circularidad entre estos dos conceptos (Carmona, 2007). Igualmente, los estudiantes asignan un carácter material a la energía, se confunden las formas de energía con sus fuentes (Pérez y Galeano 2008), le asigna sustancialidad al calor (Albert, 1978; Erickson, 1979, 1980) y no se tienen en cuenta procesos de transformación, transferencia y degradación de la energía.

Sin lugar a dudas, el siglo XVII marcó el inicio de transformaciones en el pensamiento de la humanidad, que se condensaron en la mentalidad abierta del Renacimiento a través del trabajo de personajes como Galileo y Newton (citado en Porras, 2006), quienes aplicaron los principios matemáticos, heredados del pensamiento antiguo, en la geometrización de la realidad, asignando un carácter de contrastación matematizable e instrumental a sus teorías. De hecho uno de ellos, Galileo, se circunscribe en la historia como uno de los primeros en corroborar un principio teórico predecible, mediante el trabajo experimental. Así, su crítica a las explicaciones aristotélicas en relación con el movimiento se centró en poner de relieve la abstracción al establecer que un cuerpo mantenía su estado de movimiento sin que hubiera una fuerza que lo empujara.

Retomando estas ideas de Galileo (Citado de Porras, 2006) y profundizando en la relación de las matemáticas y la física, Isaac Newton continuó la obra de Euclides al describir el movimiento en ese espacio idealizado desde la geometría. Sus tres leyes del movimiento sirvieron más adelante para inspirar la forma de comprender la inercia de un cuerpo (primera ley), predecir la trayectoria de una partícula que esté sujeta a una fuerza dada (segunda ley) y, como parte fundamental de la historia de la energía, la existencia de una ley de conservación (tercera ley), traducida en la conservación del impulso lineal.

Como se puede interpretar del análisis histórico de algunos conceptos termodinámicos, resulta inapropiado hablar del calor y el trabajo como formas de energía, al igual que del equivalente mecánico del calor, de acuerdo con los paradigmas actuales en termodinámica, ya que en el experimento de Joule el trabajo no se convierte en calor sino que produce una
variación en la energía interna. Los términos calor absorbido, calor cedido, calor suministrado y calor sustraído son inapropiados por cuanto el calor no está contenido en los cuerpos, es decir, no es una función de estado; de hecho, el empleo de un lenguaje en el que se hable de aumento o disminución de la energía debe ser objeto de análisis en favor de una comprensión más consistente con los principios termodinámicos. A continuación se deduce el principio de conservación de la energía, comenzando con un análisis de los conceptos energía, calor y temperatura, como puntos de partida en la consolidación de un lenguaje científico que permita establecer una relación entre la ley general de conservación de la energía y la teoría cinético-molecular. Es conveniente recalcar el papel fundamental de los conceptos aquí estudiados y que forman parte de la estructura de la termodinámica, consideración necesaria para establecer las interacciones multinivel que pueden establecerse para un aprendizaje significativo de la misma. (Citado de Porras, 2006). Para la comprensión de los conceptos de trabajo y energía y en general de la física y otras materias, es de suma importancia conocer la historia y epistemología, esta aportación de la historia de las ciencias y las investigaciones realizadas a lo largo del tiempo son eficaces y fundamentales para desarrollar unidades didácticas y modelos explicativos que ayuden a mejorar el aprendizaje del estudiante.
6. OBJETIVOS

6.1 Objetivo General
Describir los niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra Señora de Belén.

6.2 Objetivos Específicos
Identificar los niveles de argumentación asociados a la interacción con el proyecto Newton.
- Caracterizar los modelos explicativos de los estudiantes en función de los conceptos de trabajo y energía.
7. METODOLOGÍA

7.1 Introducción
Este capítulo presenta el proceso y diseño metodológico llevado a cabo; se describe el tipo de investigación elegida, el diseño de la investigación, el contexto investigativo, las categorías de análisis y los instrumentos usados para la recolección de los datos; finalmente se explica el procedimiento que permitió codificar y analizar la información, mediante la triangulación de los datos, provenientes de diversas fuentes.

7.2 Enfoque y alcance de la investigación
Esta investigación está definida por el enfoque de estudio cualitativo descriptivo, esta metodología puede definirse como la investigación que produce datos descriptivos: las propias palabras de las personas, habladas o escritas, y la conducta observable (Quevedo y Castaño, 2002). Para este trabajo se realizó un cuestionario debidamente planificado con un conjunto de una parte con preguntas abiertas para obtener respuestas expresadas en el propio lenguaje del estudiante y sin un límite preciso de la contestación y la segunda con preguntas cerradas con el fin de obtener una respuesta confirmativa o desestimativa ante la proposición (Herrera, 1996).
Reconociendo las diversas interacciones que se tejen dentro del aula, esta investigación se denomina educativa:
Cuando se aborda un nuevo contenido, generalmente se poseen ideas previas y explicaciones que parten de la experiencia, de nuestras percepciones, etc. Estas ideas tienen una lógica interna y son útiles para desenvolverse en la vida diaria. Por ello, aprender no significa cambiar estas ideas por otras, sino tomarlas como punto inicial para, a partir de ahí, revisarla, complementarla o modificarla. (Moral et, al., 1999)

7.3 Contexto de la investigación
La presente investigación se realizó en el Municipio de Belén, perteneciente al departamento de Nariño, Belén se comunica con Pasto por vía destapada a 89 km, con el municipio de La Cruz a 22 km de carretera destapada un tramo y gran proyecto.
pavimentada y a 21 km con el municipio de San Pablo por carretera de una sola vía, siendo ésta la más utilizada para comunicarse con el norte del país, para donde se comercia los productos obtenidos en la industria del cuero.

La Institución Educativa Nuestra Señora de Belén, sede principal – bachillerato básico y media fue escogido para la realización de la investigación, está ubicada en el nororiente del municipio – localizado en la avenida los estudiantes, con una población estudiantil de 332 estudiantes, y una capacidad profesional de 21 docentes de aula, además de 3 directivos docentes y en la parte administrativa y servicios generales 7 colaboradores que suman para un total en la planta de 363 personas; se destacan las instalaciones adecuadas para el funcionamiento normal de las actividades educativas como también para el desarrollo de la investigación.

El diseño de la investigación consistió en aplicar una prueba sobre ideas previas relacionadas con los conceptos de trabajo y energía. El instrumento de recogida de datos es un cuestionario de 15 preguntas sobre los conceptos mencionados anteriormente, para la elaboración del cuestionario se ha tenido en cuenta el nivel de los estudiantes (grado decimo de bachillerato) de forma que las preguntas resultaran comprensibles para todos y no abordaran conceptos ajenos para ellos.

Con base en las preguntas y respuestas que se plantearon a los estudiantes, el docente va aclarando las dudas y promueve la comprensión de los nuevos conocimientos. Además, mediante la triangulación de datos se llegará a la formación de modelos explicativos con los cuales se podrá abordar de mejor manera los conceptos de trabajo y energía, también se podrá observar el nivel de argumentación en el cual se encuentran los estudiantes de la institución educativa nuestra señora de Belén. Este intercambio entre todos los involucrados en el proceso de enseñanza-aprendizaje, es lo que permite que los estudiantes se sientan en la libertad de predecir, explicar y por tanto llegar a resolver los problemas eficientemente.

**7.4 Unidad de Trabajo**

Esta investigación fue desarrollada con 35 estudiantes de los grados décimo A y B en el área de física de la Institución Educativa Nuestra Señora de Belén (INENSEBEL) – sede principal, La unidad de trabajo fue escogida teniendo en cuenta el grado donde ya se
empieza a dar en conocimiento la asignatura de física, la cual en esta Institución es el grado Decimo y en donde el conocimiento previo y percepción de los temas de trabajo y energía son indidadores importantes para el desarrollo oportuno de un modelo pedagógico exitoso. Es importante señalar que algunos de ellos eran repitentes de la asignatura, sus edades oscilan entre los 15 y 16 años. A esta población estudiantil se le aplicó la variable durante un tiempo y espacio previamente determinados.

7.5 Categorías de Análisis
En esta investigación se tuvieron en cuenta las siguientes categorías de análisis.

Tabla 7.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Objetivo general</th>
<th>Objetivos específicos</th>
<th>Categorías</th>
<th>Subcategorías</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Cuál es la relación entre los niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra señora de Belén?</td>
<td>Describir los niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra señora de Belén.</td>
<td>Identificar los niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía</td>
<td>Niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía</td>
<td>Nivel 1</td>
</tr>
<tr>
<td></td>
<td>Describir los niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra señora de Belén.</td>
<td>Caracterizar los modelos explicativos en función de los conceptos de trabajo y energía</td>
<td>Niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía</td>
<td>Nivel 2</td>
</tr>
<tr>
<td></td>
<td>Describir los niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra señora de Belén.</td>
<td>Caracterizar los modelos explicativos en función de los conceptos de trabajo y energía</td>
<td>Niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía</td>
<td>Nivel 3</td>
</tr>
<tr>
<td></td>
<td>Describir los niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra señora de Belén.</td>
<td>Caracterizar los modelos explicativos en función de los conceptos de trabajo y energía</td>
<td>Niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía</td>
<td>Nivel 4</td>
</tr>
<tr>
<td></td>
<td>Describir los niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra señora de Belén.</td>
<td>Caracterizar los modelos explicativos en función de los conceptos de trabajo y energía</td>
<td>Niveles de argumentación y la relación con los modelos explicativos de los conceptos de trabajo y energía</td>
<td>Nivel 5</td>
</tr>
</tbody>
</table>
7.6 Diseño Metodológico

En el diseño metodológico de esta investigación usamos un tipo de estudio cualitativo – descriptivo, basándonos en el objeto general de la investigación, usando una serie de secuencia que se describen a continuación.

7.7 Fases del proceso metodológico

Debido a que el proceso de investigación tiene un enfoque descriptivo y cuantitativo, la fuente e instrumentos de recolección de los datos será primaria ya que los datos serán tomados desde el lugar de origen, esta fuente dará resultados de calidad de la información siendo esta la base para desarrollar los objetivos propuestos al comienzo de la investigación, esta metodología está relacionada con el enfoque teórico conceptual que se ha desarrollado durante este estudio.

La relación entre el docente y el estudiante para la recolección de datos será la encuesta tipo cuestionario diseñada por el docente en la cual tendrá un control sobre los posibles errores en la recolección de los datos, en la que el docente recoge directamente a través de un contacto inmediato su objeto de análisis, en este caso la exploración de las ideas previas sobre trabajo y energía. El trabajo se establecerá cuatro fases las cuales se describen a continuación:

**Fase uno:** A través del uso de test para la búsqueda de información, se determinarán las ideas de los estudiantes sobre el tema que será motivo de aprendizaje. Al iniciar el estudio de la disciplina, una asignatura o un tema, es necesario indagar o conocer las ideas previas más generales que al respecto poseen los estudiantes; ideas que permiten valorar la solidez de los conocimientos, que sobre los conceptos de trabajo y energía poseen y, que pueden ser usadas en el proceso de enseñanza–aprendizaje de la disciplina. De esta forma se tendrán elementos para el diseño de la estrategia en sus primeros momentos.
**Fase dos:** Obtenida la transcripción de las ideas previas se procederá a analizar la información recopilada. De este análisis se obtendrá el nivel de argumentación en el cual puede clasificar cada una de las respuestas dadas por los estudiantes.

**Fase tres:** luego de clasificar el total de respuestas para cada nivel de argumentación se establecerá un modelo explicativo, con el cual se identifiquen cada grupo de respuestas y su respectivo nivel de argumentación.

Fase cuatro: después de la clasificación de los niveles argumentativos e identificados los modelos explicativos, se establece la relación existente. Con lo cual procedemos a concluir el trabajo investigativo.

**7.8 Plan de Análisis**

El plan de análisis se realizó utilizando la siguiente secuencia:

- Aplicación de los cuestionarios
- Transcripción de la información obtenida de los cuestionarios en una matriz del programa de Excel (Microsoft Office)
- Categorización de la información: preguntas cerradas con la observación de la opción o categoría marcada como posible respuesta y preguntas abiertas a partir de las respuestas con características similares se dividieron en diferentes categorías de forma tal que se pudieran clasificar y agrupar.
- Clasificación de la información en niveles de argumentación.
- Clasificación de la información en modelos explicativos
- Identificación de la relación entre los niveles de argumentación y los modelos explicativos
- Construcción de tablas y gráficas de las tendencias evaluadas.
- Conclusiones y recomendaciones teniendo en cuenta los objetivos propuestos en la investigación.
8. RESULTADOS

8.1 Presentación de Resultados, Análisis y Discusión

Con los resultados del presente trabajo de investigación se pretende dar respuesta al interrogante de ¿Cuál es la relación entre los niveles de argumentación y los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado decimo en la Institución Educativa Nuestra Señora de Belén?, con el propósito de aportar información para el mejoramiento de la enseñanza de las ciencias.

Después de la aplicación del cuestionario a cada estudiante, se procedió al análisis de los datos en la matriz y a continuación se presentan los resultados obtenidos.

8.2 Identificación de los niveles de argumentación en los estudiantes del grado décimo

Para el análisis de la información se tomaron como punto de partida algunos de los aportes derivados de las matrices argumentativas presentadas por Toulmin (2007), con el fin de crear las categorías que serán el punto de partida en el presente informe de investigación.

Inicialmente se muestran los resultados en cuanto a la estructura argumentativa de los estudiantes en la recolección de datos textuales, al dar respuesta a un formulario que consta de 15 preguntas. A partir del cual los estudiantes debían exponer el porqué de su respuesta. Tras el análisis de las respuestas de los estudiantes se logra identificar que los estudiantes se encuentran predominantemente en los primeros niveles argumentativos, siendo el nivel 1 el de mayor número de casos como lo muestra en la Tabla 8.

![Relación porcentual entre los niveles de argumentación en el análisis textual preliminar de los estudiantes.](image)

*Figura 3.* Relación porcentual entre los niveles de argumentación en el análisis textual preliminar de los estudiantes.
En la tabla 8 y figura 3 se puede observar que el 89% del total de respuestas analizadas corresponde al nivel 1, el 11% al nivel 2, sin encontrar evidencia en los demás niveles. Al respecto, Diáz (2000) evidenció que en las pruebas SABER 11, de los 76.618 estudiantes que presentaron el examen en marzo pasado, muy pocos alcanzaron un alto nivel de competencia (marcado con la letra C) para interpretar, argumentar y proponer. En física, no hay desempeño alto en ninguno de los temas (mecánica clásica de partículas, eventos ondulatorios, termodinámica, electromagnetismo). Es más, el 30 por ciento de los estudiantes (23.285) no supera el nivel bajo (letra A) para interpretar y argumentar en física.

Por su parte, se encontró los trabajos de Arriassecq & Iracheta citado en Monzon (2011) y el de Henao y Stipcich (2008), ambos exploran la habilidad de argumentar de los estudiantes. Sin embargo, en ambos artículos se refieren a una argumentación lógico matemática (demostración) enfocada a las ciencias y no a la argumentación retórica. A pesar de ello, los autores encontraron que el nivel de argumentación de los estudiantes fue bajo y respondía de manera directa a la intuición del estudiante más que a un proceso formal de aprendizaje, estos resultados se asemejan a los encontrado en la presente investigación.

**Tabla 8.**

*Resultado de los niveles de argumentación en el análisis textual preliminar de los estudiantes.*

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Subcategoría</th>
<th>No. de estudiantes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niveles de</td>
<td>Nivel 1</td>
<td>31</td>
<td>89</td>
</tr>
<tr>
<td>argumentación</td>
<td>Nivel 2</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Nivel 3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Nivel 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Nivel 5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

En la tabla 8 y figura 3 se puede observar que el 89% del total de respuestas analizadas corresponde al nivel 1, el 11% al nivel 2, sin encontrar evidencia en los demás niveles. Al respecto, Diáz (2000) evidenció que en las pruebas SABER 11, de los 76.618 estudiantes que presentaron el examen en marzo pasado, muy pocos alcanzaron un alto nivel de competencia (marcado con la letra C) para interpretar, argumentar y proponer. En física, no hay desempeño alto en ninguno de los temas (mecánica clásica de partículas, eventos ondulatorios, termodinámica, electromagnetismo). Es más, el 30 por ciento de los estudiantes (23.285) no supera el nivel bajo (letra A) para interpretar y argumentar en física.

Por su parte, se encontró los trabajos de Arriassecq & Iracheta citado en Monzon (2011) y el de Henao y Stipcich (2008), ambos exploran la habilidad de argumentar de los estudiantes. Sin embargo, en ambos artículos se refieren a una argumentación lógico matemática (demostración) enfocada a las ciencias y no a la argumentación retórica. A pesar de ello, los autores encontraron que el nivel de argumentación de los estudiantes fue bajo y respondía de manera directa a la intuición del estudiante más que a un proceso formal de aprendizaje, estos resultados se asemejan a los encontrado en la presente investigación.

46
De igual manera, Tarabay y León (citado en Monzon, 2011) han publicado dos artículos, resultado de sus investigaciones. Uno en 2004 titulado “La argumentación en la clase magisterial” y “La argumentación como forma de comunicación en el discurso del profesor universitario” en 2007. En ambos se buscó averiguar las estrategias argumentativas utilizadas por los docentes en clase. En la segunda de ellas se parte de la teoría de la Acción Comunicativa de hablar más para comprender la argumentación como un tipo específico de interacción comunicativa que el docente entabla con los estudiantes, debido a que, fundamentalmente, en las ciencias sociales, a diferencia de las naturales, los docentes no buscan demostrar lo que afirman, sino lograr la adhesión de los estudiantes a los argumentos que proponen. Lo anterior, se encuentra en consonancia con lo mostrado en este estudio, ya que los resultados demuestran que la baja interrelación entre los conceptos teóricos adquiridos por los estudiantes en el aula y su concatenación con la vida cotidiana no se da o entra en contraposición con los resultados teóricos presentados por el profesor. Los resultados presentados ayudan a pensar en cómo la relación que el docente entabla con el estudiante determina, de alguna manera, que éste aprenda a argumentar. En la clase magisterial, por ejemplo, nos comenta la autora, se utiliza la argumentación por autoridad, tanto propia como de los expertos, lo que no motiva al debate de ideas.

El análisis de las frecuencias en las respuestas de los estudiantes según los diferentes niveles argumentativos muestra cierta tendencia al empleo de niveles argumentativos menos exigentes. Por esta razón, la escuela debe considerar la argumentación como una herramienta pedagógica que permita crear espacios de consenso entre las diversas opiniones que se puedan dar acerca de un tema o situación. Sólo a través del intercambio de posturas y la aceptación de la diferencia, llegando a la elaboración de acuerdos, lograremos un mundo pacífico.

El estudiante se enfoca solo en describir los datos de lo que ocurrió en la actividad. Todas las respuestas que hacen parte del nivel 1 de argumentación se caracterizan por realizar descripciones literales de los fenómenos observados, que llevan al lector a recrear la escena de realización de los experimentos. Para tal efecto, el estudiante hace uso de algunos verbos en primera persona, con el fin de describir con detalle lo que se hizo en la actividad.
Al parecer, los estudiantes aprenden con cierta facilidad la estructura básica argumentativa que les permite identificar datos y conclusión, dejando atrás la descripción literal de los fenómenos presentados, tal como se ilustra en la Tabla 8.

**Tabla 9.**

*Respuesta, análisis y clasificación del nivel 1 de argumentación.*

<table>
<thead>
<tr>
<th>Estudiante</th>
<th>Respuesta</th>
<th>Descripción Dato</th>
<th>Nivel de Argumentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>*6Aal</td>
<td>“hace trabajo ya que esta sujetado la caja con una cantidad de fuerza para poder hacerlo”</td>
<td><strong>Dato:</strong> la respuesta del estudiante se limita solo a describir la situación</td>
<td>1</td>
</tr>
<tr>
<td>*2bJA</td>
<td>“porque está transportando un bulto pesado y de esto se necesita de mucha resistencia y fuerza”</td>
<td><strong>Dato:</strong> la respuesta del estudiante está relacionada a situaciones cotidianas por lo tanto no tiene profundidad</td>
<td>1</td>
</tr>
<tr>
<td>*11SA</td>
<td>“la usamos como combustible y eso es lo que es”</td>
<td><strong>Dato:</strong> la respuesta del estudiante está basada en una idealización de la realidad, al tratar a la energía como un elemento vital (combustible), pero su respuesta simple que carece de argumentos.</td>
<td>1</td>
</tr>
</tbody>
</table>

*6 pregunta cerrada – a. opción a – AL. Inicial del nombre del estudiante encuestado
*2 pregunta cerrada – b. opción b – JA. Inicial del nombre del estudiante encuestado
*11 pregunta abierta – SA. Inicial del nombre del estudiante encuestado*
Los textos anteriores muestran de manera clara las descripciones realizadas por los estudiantes con base en las respuestas de las situaciones presentadas. Son descripciones literales que muestran lo sucedido en cada situación, que no arriesgan posibles explicaciones o justificaciones, centradas en la dimensión experiencial y, en cierta forma producidas con la mediación activa de los órganos de los sentidos, en lo que podríamos llamar, con Rivière (1988), un argumento con carácter fenoménico. En otras palabras, un argumento construido a partir de la apariencia externa de la situación estudiada, un argumento que describe el fenómeno, que lo recrea en su forma, sin explicaciones o justificaciones que nos den a entender algo acerca de su comprensión (Tamayo, 2012).

Las respuestas ubicadas en el nivel argumentativo 1 representan, en el mejor de los casos, la situación dada en las diferentes experiencias y preguntas en el aula. Su característica central es el empleo de las mismas expresiones utilizadas en la situación presentada, de tal manera que los estudiantes terminan parafraseando los textos leídos y escuchados. En este caso no observamos que los estudiantes demuestren comprensión de la situación, lo cual se corrobora con el empleo de lenguajes descriptivos en los que se narra la actividad dada. Más que lograr comprensiones cabales de las diferentes situaciones presentadas, los estudiantes describen las actividades fenoménicamente a partir de acciones sensor-perceptuales, lo cual se concreta con el empleo de verbos en primera persona que hacen referencia a lo sentido por ellos en el transcurso de la actividad. El predominio de acciones mediadas por los sentidos (oír, tocar, sentir…) se complementa con la ausencia de acciones que evidencien esfuerzos de parte de los estudiantes en función de comprender las distintas situaciones dadas. La presencia de lo fenoménico unido a la ausencia de lo reflexivo en el actuar de los estudiantes los lleva, en términos de producción textual, a describir de manera tautológica lo observado y, en consecuencia, a evidenciar comprensiones superficiales o descripciones literales de las diferentes actividades diseñadas para explorar sus habilidades y competencias argumentativas. (Tamayo, 2012).

El nivel 2 de argumentación comprende argumentos en los que se identifican con claridad los datos (data) y una conclusión (claim), en seguida se muestran en la tabla 10 las respuestas clasificadas en nivel dos.
### Tabla 10.

**Respuesta, análisis y clasificación del nivel 2 de argumentación.**

<table>
<thead>
<tr>
<th>Estudiante</th>
<th>Respuesta</th>
<th>Descripción Dato – Conclusión</th>
<th>Nivel de Argumentación</th>
</tr>
</thead>
</table>
| *13MA      | “En fuerza ya que al tener suficiente energía uno tiene mayor capacidad para realizar su respectiva actividad, obteniendo una transformación de energía a fuerza” | **Dato:** En fuerza ya que al tener suficiente energía uno tiene mayor capacidad para realizar su respectiva actividad  
**Conclusión:** obteniendo una transformación de energía a fuerza | 2 |
| *3aMAA     | “ya que esta escalera está totalmente recta por lo tanto se realiza mayor trabajo que el de la figura b que está en diagonal, esto se debe a la actuación del peso” | **Dato:** ya que esta escalera está totalmente recta por lo tanto se realiza mayor trabajo que el de la figura b que está en diagonal  
**Conclusión:** esto se debe a la actuación del peso | 2 |
| *11MD      | “es lo que utilizamos constantemente en nuestra vida, la usamos para fabricar productos alimenticios y para nuestro hogar, de un buen manejo de estas energías depende el bienestar del ambiente” | **Dato:** es lo que utilizamos constantemente en nuestra vida, la usamos para fabricar productos alimenticios y para nuestro hogar.  
**Conclusión:** de un buen manejo de estas energías depende el bienestar del ambiente | 2 |

*13 pregunta abierta – MA. Inicial del nombre del estudiante encuestado  
*3 pregunta cerrada – a. opción a – MAA. Inicial del nombre del estudiante encuestado  
*11 pregunta abierta – MD. Inicial del nombre del estudiante encuestado

Al respecto Sardá y Sanmartí citado en Cardona, (2008), en España, estudiaron la argumentación en estudiantes de ciencias que participaron en un juego de rol. Las autoras encontraron que los patrones estructurales de los argumentos eran completos, y que había un uso adecuado de los conectores lógicos. Sin embargo, el análisis funcional del texto mostró dificultades relacionadas con la relevancia y pertinencia de los argumentos, la
elección de evidencias desde teorías implícitas más que científicas, interpretaciones e inferencias no justificadas y conclusiones no derivadas del contexto teórico. A estas dificultades de orden conceptual se suman otras relacionadas con la ausencia de procesos autorreguladores. Las dificultades anotadas aluden a aspectos de orden cognitivo, conceptual y metacognitivo que ameritan un estudio más profundo de las interacciones entre estos componentes.

Cardona (2008) concluye en su investigación que la presencia de datos-conclusión, se evidencia como una expresión de la construcción de evidencias que respaldan un determinado modelo. Dado que dichas evidencias emergieron de las experiencias o ejemplos de las interlocutoras, podría postularse que la experiencia personal, propia, cercana a la cotidianidad, puede constituirse en el centro de la problematización en el aula de ciencias y en la generación de contextos de construcción de conocimiento.

Para (Tamayo, 2012) en este nivel argumentativo se destaca el empleo de, al menos, una conclusión en los argumentos de los estudiantes. Frente al nivel argumentativo anterior, la diferencia reside en la presencia o no de conclusiones. En este caso, los estudiantes no describen literalmente el fenómeno y no solo enumeran o identifican los datos contenidos en las situaciones presentadas; por el contrario, empiezan a identificar posibles conclusiones derivadas de los datos identificados. Al parecer, distinguir las descripciones literales de los datos de las conclusiones se logra con cierta facilidad. Identificar datos y conclusión se constituye, entonces, en la estructura argumentativa más simple, la cual empieza a evidenciarse en este nivel.

Las respuestas de los estudiantes fueron clasificadas en los niveles 1 y 2 lo cual quiere decir que tienen conflictos para hallar evidencias explicativas, esto se debe a que ellos argumentan en pro de lo que tienen en el entorno y sus preconcepciones, lo que conlleva que no puedan determinar el concepto hacia los modelos de ciencia; eso es consecuente con que se le presenten dificultades en concluir significativamente y menos a que justifiquen un concepto.
8.3 Caracterización de los modelos explicativos de los estudiantes en función de los conceptos de trabajo y energía.

Los modelos explicativos encontrados en el grupo de estudio para expresar los conceptos de trabajo y energía son: esfuerzo, cotidiano, vitalista y fuente, dos para cada concepto, respectivamente. Cabe mencionar que estos modelos son únicos, ya que la literatura no arroja resultados sobre estos. A continuación, se hace referencia a cada uno de los modelos mencionados.

Algunos de los aspectos característicos del modelo esfuerzo para el concepto de trabajo son: iniciaremos con la definición de trabajo y esfuerzo por separado para luego converger en el modelo esfuerzo.

**Trabajo**: El concepto de trabajo está ligado muy íntimamente al de energía. Esta ligazón puede verse en el hecho de que, del mismo modo que existen distintas definiciones de energía (para la mecánica, la termodinámica), también existen definiciones distintas de trabajo, aplicables cada una a cada rama de la física (Velásquez, 2012. Pág. 48-77). El trabajo es una magnitud de gran importancia para establecer nexos entre las distintas ramas de la física. Cuando se levanta un objeto desde el suelo hasta la superficie de una mesa, por ejemplo, se realiza trabajo al tener que vencer la fuerza de la gravedad, dirigida hacia abajo; la energía comunicada al cuerpo por este trabajo aumenta su energía potencial. También se realiza trabajo cuando una fuerza aumenta la velocidad de un cuerpo, como ocurre por ejemplo en la aceleración de un avión por el empuje de sus reactores. La fuerza puede no ser mecánica, como ocurre en el levantamiento de un cuerpo o en la aceleración de un avión de reacción; también puede ser una fuerza electrostática, electrodinámica o de tensión superficial.

Por otra parte, si una fuerza constante no produce movimiento, no se realiza trabajo. Por ejemplo, el sostener un libro con el brazo extendido no implica trabajo alguno sobre el libro, independientemente del esfuerzo necesario. Por lo tanto, es el producto de una fuerza aplicada sobre un cuerpo y del desplazamiento del cuerpo en la dirección de esta fuerza. Mientras se realiza trabajo sobre el cuerpo, se produce una transferencia de energía al mismo, por lo que puede decirse que el trabajo es energía en movimiento.
<table>
<thead>
<tr>
<th>Modelo</th>
<th>Número de pregunta</th>
<th>Estudiante</th>
<th>Tipo de respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>AO</td>
<td>“Entiendo por trabajo que es una forma de dar uso a cualquier actividad que realicemos, y también es una base para poder sostenernos y estar establemente bien, esforzarse dependiendo del trabajo que sea”</td>
</tr>
<tr>
<td>Esfuerzo</td>
<td>1&quot;</td>
<td>JU</td>
<td>“yo entiendo que es la función que uno desempeña en alguna labor, el esfuerzo que utiliza para lograr algo”</td>
</tr>
<tr>
<td></td>
<td>1&quot;</td>
<td>MO</td>
<td>“Es una actividad en la que nuestro esfuerzo es compensado”</td>
</tr>
</tbody>
</table>

*1: número de pregunta de la encuesta
*AO-JU-MO: Hace referencia al nombre y apellido del estudiante a quien se le realizó la encuesta.

Teniendo en cuenta el concepto para este tipo de modelo, se puede deducir de la tabla 11 que los estudiantes relacionan, el modelo esfuerzo con el consumo de energía en la acción de desplazar un cuerpo, para cambiar la posición de un cuerpo se necesita de una voluntad, cuando este esfuerzo es vigoroso y logra mover el cuerpo en este se ha realizado un trabajo.
De la figura 4 se puede concluirse que el 28,6 % de las respuestas dadas por los estudiantes se encuentra en este modelo. Los estudiantes asocian su respuesta con que el trabajo requiere del consumo de energía tanto mayor sea el esfuerzo solicitado. Al consumo de energía como consecuencia del trabajo se le denomina esfuerzo. Como trabajo denominamos el conjunto de actividades que son realizadas con el objetivo de alcanzar una meta, solucionar un problema o producir bienes y servicios para atender las necesidades humanas. “Trabajo” (s.f).
Como se puede observar en las respuestas de los estudiantes se puede constatar que para clasificarlas en este modelo, los estudiantes tendieron a responder el concepto con la relación que tiene el hombre con la posibilidad de lograr sus metas, sueños, a las actividades diarias para lograr un objetivo en la vida.
En el modelo cotidiano consideramos aquellas expresiones de los estudiantes en las que se afirma que el trabajo es algo cotidiano que se debe realizar para poder mantener la economía de la familia, sin tener en cuenta el esfuerzo realizado.
### Tabla 12.

*Ideas previas clasificadas en el modelo cotidiano.*

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Número de pregunta</th>
<th>Estudiante</th>
<th>Tipo de respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotidiano</td>
<td>1</td>
<td>MA*</td>
<td>“que es una ocupación o actividad que realizan las personas con el fin de obtener una ganancia o para ocupar su tiempo”</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>AB*</td>
<td>“es la forma de dar uso a todos los trabajos que nos asignan los docentes y mediante esto mirar todos los conocimientos que conocemos y también mirar dificultades y corregirlas”</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>KO*</td>
<td>“es realizar una actividad en donde todo lo que realizamos se recompensa”</td>
</tr>
</tbody>
</table>

*1: número de pregunta de la encuesta  
*MA-AB-KO: Hace referencia al nombre y apellido del estudiante a quien se le realizó la encuesta.

Muchas respuestas coinciden en expresar que el trabajo es una ocupación con fines lucrativos para la supervivencia en un país cada vez más golpeado por la violencia y el desempleo, como lo muestra la tabla 12 la gran mayoría de las respuestas muestran su inclinación a este tipo de modelo.
**Figura 5.** Porcentaje de respuestas relacionadas al modelo de Cotidiano.

De la figura 5 puede concluirse que el 71.4% de las respuestas; están inclinadas a conceptos relacionados con trabajar para salir adelante. En otras palabras, piensan que es algo natural de los seres vivos y por tal razón debe realizarse. Para darle utilidad a este modelo se hace necesario basar la explicación en algunos trabajos cotidianos seleccionados ya que se dificulta relacionar algunos de estos con el concepto de trabajo en física por ejemplo el trabajo de un catador.
Figura 6. Porcentaje de respuestas asociadas a los modelos de esfuerzo y cotidiano.

De la figura 6 puede concluirse que independiente de la forma como se plantea la pregunta, las respuestas dadas por los estudiantes están presentes para los modelos de esfuerzo y cotidiano; sin embargo existe una marcada diferencia en los modelos ya que los estudiantes tienen la facilidad de relacionar el concepto de trabajo asociado a situaciones cotidianas. Estos modelos para el concepto de trabajo (esfuerzo y cotidiano) se basan en lo que perciben y viven a diario, por lo tanto estos serán la base más simple para introducir el concepto de trabajo pero desde la física, ya que en estos modelos no se incluye y se pasa por alto todo el manejo matemático que acarrea este concepto, pero estos modelos serán los pilares fundamentales, ya que gran parte del concepto se planteara desde los conocimientos ya adquiridos por los estudiantes disminuyendo así la complejidad de dicho concepto. Ahora nos referiremos a los dos modelos para el concepto de energía los cuales son: Modelo vitalista y modelo fuente, estos modelos serán el vehículo para introducir de manera más sencilla y menos traumática el concepto en cuestión.
En el modelo vitalista los estudiantes consideran que la energía es la causante de que los seres permanezcan vivos y puedan realizar algunas acciones matutinas, esencialmente relacionan la energía con la vida.

Tabla 13.

Ideas previas clasificadas al modelo vitalista.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Número de pregunta</th>
<th>Estudiante</th>
<th>Tipo de respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitalista</td>
<td>8</td>
<td>MA*</td>
<td>“es un compuesto inorgánico o una sustancia química que se obtiene a través de diferentes procesos químicos y la usa para vivir”</td>
</tr>
<tr>
<td>Vitalista</td>
<td>8</td>
<td>CS*</td>
<td>“es una sustancia química que se obtiene a través de ciertos procesos físicos y se utiliza para beneficio propio y para la vida”</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>DO*</td>
<td>“la energía es la fuerza que tiene una persona para realizar trabajo y poder sobrevivir”</td>
</tr>
</tbody>
</table>

*8: número de pregunta de la encuesta
*MA-CS-DO: Hace referencia a las iniciales de nombre y apellido del estudiante a quien se le realizó la encuesta.

De la tabla 13, se deduce que las respuestas hacen referencia de algo que emerge dentro de nosotros, es decir puramente biológico y que sirve para poder vivir.
La figura 7 representa que el 57,2 % de las respuestas de los estudiantes se ubicaron en este modelo explicativo. Este resultado referencia que al mirar a nuestro alrededor se observa que las plantas crecen, los animales se trasladan y que las máquinas y herramientas realizan las más variadas tareas.

La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza. La energía se manifiesta en los cambios físicos, por ejemplo, al elevar un objeto, transportarlo, deformarlo o calentarlo. La energía está presente también en los cambios químicos, como al quemar un trozo de madera o en la descomposición del agua mediante la corriente eléctrica (Recio, s.f).

Desde el primer momento de nuestras vidas que necesitamos de un Alimento para poder subsistir y salir adelante, estando inclusive en el Útero de nuestras madres recibiendo nutrientes, hasta en el primer momento en que nacemos, donde se nos requiere el alimento de la Leche Materna sumado al abrigo y cuidados de nuestra familia, el primer Grupo Social al que se nos inserta. Importancia.org (s.f).

Esta necesidad de alimentos no solo nos corresponde a los Seres Humanos, sino que es una de las funciones vitales de todos los Seres Vivos en general, teniendo la necesidad de poder Incorporar Nutrientes en caso de aquellos que dependen del consumo de otros organismos,
mediante la alimentación, mientras que por otro lado tenemos aquellos seres que realizan la Fotosíntesis, el proceso en el cual a través de la Luz Solar y mediante un proceso fisicoquímico avanzado pueden fabricar su propio alimento. *Importancia.org (s.f).*

En ambos casos, lo que se persigue es poder obtener los Nutrientes necesarios para que sus células puedan Alimentarse y Reproducirse, mientras que por otro lado estas acciones requieren del concepto de Energía, que tiene muchas aplicaciones que podemos encontrar en la vida cotidiana, pero cuyo punto en común es considerar a una cosa que es consumida o utilizada para poder Realizar una Acción. *Importancia.org (s.f).*

El modelo fuente se considera que la energía permanece en nuestro cuerpo como una fuente, es el combustible, es decir, la sustancia que se quema, como lo hace la gasolina en los carros. No mencionan el proceso con el cual se forma dicha fuente y mucho menos los métodos matemáticos para procesar la información en física.

### Tabla 14.

*Ideas previas clasificadas al modelo fuente.*

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Número de pregunta</th>
<th>Estudiante</th>
<th>Tipo de respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuente</td>
<td>8</td>
<td>MA</td>
<td>“es una fuente que tenemos formada de enlaces tanto de electrones, como de cualquier cosa que la genere”</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>AB</td>
<td>“la energía es una fuente que tenemos en el cuerpo”</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>BR</td>
<td>“yo entiendo por energía que es una fuente que nos sirve para realizar distintas cosas, esta fuente necesita de algunas condiciones para poder recargarse”</td>
</tr>
</tbody>
</table>

*8: número de pregunta de la encuesta. *MA-AB-BR: Hace referencia a las iniciales de nombre y apellido del estudiante a quien se le realizó la encuesta.*
Las respuestas de los estudiantes presentan en síntesis, que estos conciben las fuentes de energía como todos aquellos componentes de la naturaleza a partir de los cuales se puede extraer la energía utilizable por el hombre.

La figura 8 muestra para el modelo fuente que las respuestas reflejan un 42.8 % del total obtenido, asociadas básicamente a que manejan el concepto en términos de funcionamiento de las industrias, maquinarias y transporte como lo plantea Serway y Jewett, 2008, p. 163. El concepto de energía es uno de los temas más importantes en ciencia e ingeniería. En la vida cotidiana se piensa en la energía en términos de combustible para transporte y calentamiento, electricidad para luz y electrodomésticos, y alimentos para el consumo. No obstante, estas ideas no definen la energía; sólo dejan ver que los combustibles son necesarios para realizar un trabajo y que dichos combustibles proporcionan algo que se llama energía.
En la figura 9, se define que los porcentajes entre los modelos son muy estrechos por lo tanto los estudiantes asocian sus respuestas a que el concepto de energía está ligado a la demanda y consumo de fuentes de energía que están estrechamente relacionados con el desarrollo sustentable y la calidad de vida. El modelo vitalista muestra en sí para ellos como la energía dentro del ser humano, y en relación a la fuente hacen referencia sobre la articulación de esta para su manifestación en las actividades.

La energía es esencial para la satisfacción de muchas necesidades. Sin ella sería imposible la producción de bienes y servicios, así como la realización de labores tan cotidianas como cocinar, calentarse, viajar de un lugar a otro, comunicarse o iluminar una casa u oficina. El flujo de materiales necesarios para mantener estas actividades depende de la existencia y disponibilidad de estas fuentes. (nuestraesfera.cl, 2013).

Los estudiantes de acuerdo con sus respuestas ven el ser humano y todo ser vivo como una máquina, la cual necesita de una fuente de energía, entonces ellos asumen que para poder desarrollar cualquier acción debe existir dentro de cada cuerpo una fuente que provee de energía dicho cuerpo y pueda interactuar con el medio.

Ellos conciben esta fuente como una batería que puede cargarse y descargarse dependiendo de la labor a realizar por el cuerpo, se descarga cuando el cuerpo ha realizado una labor, la cual demande demasiado esfuerzo o esta se extienda por lapsos de tiempo prolongados y para recargarla se hace necesario el consumo de alimentos, con lo cual la fuente se restaura y el cuerpo vuelve a estar en capacidad de realizar la misma labor. Además de la
alimentación esta fuente puede ganar energía cuando la persona se toma un descanso y duerme.

Se entiende pues que esta fuente no es infinita y en cierto momento se agotará totalmente, refiriéndose a la muerte corporal, esta es una idea previa que tenemos que modificarla en los estudiantes, ya que la fuente de la que hablan es la energía que permite a los cuerpos desplazarse y realizar cualquier acción; en física la energía no se destruye, solo se transforma, principio de conservación de la energía, en este punto podemos considerar esta idea como un obstáculo en el aprendizaje, pero gracias a este mismo modelo este obstáculo será superado de manera satisfactoria.

Este modelo será muy didáctico ya que se tomaría como objeto de estudio a un ser vivo, entonces en el momento que se hable de desplazamiento en cierto cuerpo, podemos referirnos a la energía cinética, y desde aquí se abordará toda la física de la energía cinética, ahora cuando una persona sube unas escaleras está ganando energía potencial, por lo tanto con ese ejemplo tocaríamos a fondo todo lo que tiene que ver con este tipo de energía, pero sin dejar de lado la idea principal de la fuente que poseen los cuerpos vivos.

El estudio realizado con los estudiantes lo podemos contrastar con algunas de las investigaciones realizadas a través de los años sobre los conceptos de trabajo y energía, teniendo en cuenta las ideas previas de los estudiantes.

Una investigación realizada por Watts (citado en Velásquez, 2012), con estudiantes entre 14 y 18 años (rango de edad en el cual se encuentran la gran mayoría de los estudiantes colombianos de los dos últimos años de educación media), hizo evidente la variación de significados que los jóvenes tienen acerca del concepto de energía. Watts agrupó los resultados en 7 categorías: 1) energía asociada a capacidades humanas tales como poder subir un objeto por unas escaleras; 2) energía como “depósito” que será origen de actividades; es el caso de alimentos y baterías; 3) la energía como “ingrediente”, algo que no está “almacenado” en un sistema sino que aparece al interactuar con él, por ejemplo, los alimentos por sí solos no tienen energía, ésta aparece en el organismo como consecuencia de haberlos consumido; 4) la energía como actividad, es decir, el movimiento es energía; 5) la energía como producto de la actividad, tal sería el caso de los productos químicos que liberan parte de su energía produciendo calor; 6) energía funcional, necesaria para que los
aparatos funcionen, generalmente asociada a los electrodomésticos; 7) la energía como un “fluido” que se transfiere de un sistema a otro, relacionada con el “flujo” de la electricidad. En la investigación de Hierrezuelo (citado en Velásquez, 2012), se encuentran varias similitudes, por ejemplo, los estudiantes confunden los conceptos fuerza, energía, trabajo y potencia; y de manera recurrente asocian únicamente energía con movimiento, fuerza, calor, combustible, sol y electricidad. En consecuencia, el concepto de energía potencial, como energía almacenada por un sistema que está a la espera de ser liberada para transformarse en otra forma de energía, no encuentra cabida en la mente de la mayoría de los jóvenes. A partir de estas investigaciones también se evidencia, la no aproximación, durante la escuela primaria y secundaria, al concepto de trabajo y energía que parta de la realización sistemática de experimentos, de tal forma que les permitan reconocer algunos de los más importantes tipos de energía, así como los mecanismos mediante los cuales se lleva a cabo la transformación de un tipo de energía a otro. Finalmente, esto se traduce en una dificultad, que en muchos casos raya con la imposibilidad absoluta, de poder llevar a cabo una matematización más o menos formal de los conceptos de trabajo, energía y potencia y de establecer diferencias entre uno y otro concepto.

8.4 Análisis comparativo de los niveles argumentativos respecto al modelo explicativo

Como ya se observó, en los anteriores apartados se resaltó la importancia de la enseñanza de las ciencias, el papel que juega la argumentación y el uso de modelos en la enseñanza de las ciencias. Sin embargo, es fundamental destacar la relación que tienen los procesos argumentativos con los modelos explicativos. A partir de la categorización realizada previamente, se construye la tabla 8 en la cual se aprecia de manera ordenada la frecuencia con la que cada estudiante se ubicó en cada nivel argumentativo. En este caso la mayoría de las respuestas, 31 de 35 posibles, se construyeron con el nivel argumentativo más bajo; si se revisa la caracterización es posible detectar que en estas respuestas por lo general cortas y poco profundas tienen una afirmación pero al momento de respaldarla los datos o justificaciones usados no dan
soporte; la razón de esto puede ser que las estudiantes deben generar sus respuestas a partir de modelos explicativos alejados de los modelos científicos aceptados. Los hechos anteriores están directamente relacionados hacia la clasificación de los modelos explicativos que emergieron también del resultado de las respuestas dadas por los estudiantes, en el concepto de trabajo; las respuestas de los estudiantes se asociaron a un modelo esfuerzo y otro cotidiano con mayor proporción en el segundo que en el primero, lo que da cuenta que los estudiantes tienen una visión conceptual teniendo en cuenta la vivencia, las costumbres y el ámbito social. Para el concepto de energía, las respuestas estuvieron clasificadas hacia los modelos de vitalista y fuente, siendo el modelo vitalista en el mayor número de respuestas asociadas; lo que demuestra que los estudiantes relacionan su respuesta con los recursos naturales que se necesitan para poder vivir.

Tabla 15.
Relación de los niveles de argumentación y los modelos explicativos del concepto de trabajo.

<table>
<thead>
<tr>
<th>Concepto de trabajo</th>
<th>Nivel de argumentación 1 y 2</th>
<th>Modelos explicativo Esfuerzo y cotidiano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajo / actividad</td>
<td>Esfuerzo / resultado</td>
<td></td>
</tr>
<tr>
<td>Actividad / esfuerzo</td>
<td>Esfuerzo / cambio</td>
<td></td>
</tr>
<tr>
<td>Actividad / ganancia</td>
<td>Ocupación / lucrativo</td>
<td></td>
</tr>
<tr>
<td>Problema / solución</td>
<td>Trabajo / salir adelante</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 16.
Relación de los niveles de argumentación y los modelos explicativos del concepto de energía.

<table>
<thead>
<tr>
<th>Concepto de energía</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nivel de argumentación</strong></td>
</tr>
<tr>
<td>1 y 2</td>
</tr>
<tr>
<td>Combustible / energía</td>
</tr>
<tr>
<td>Energía / actividad</td>
</tr>
<tr>
<td>Energía / fuerza</td>
</tr>
<tr>
<td>Energía / bienestar</td>
</tr>
</tbody>
</table>

Debido a que los modelos explicativos utilizados por los estudiantes corresponden a perspectivas previas de los conceptos de trabajo y energía, la investigación indica, que tales modelos por su baja duración, constituyen una herramienta para que los docentes desde allí busquen alternativas para confrontar los modelos y explicar desde la ciencia el verdadero concepto de los temas.

Los modelos explicativos esfuerzo y cotidiano para trabajo, fuente y vital se consideran como alejados de modelos científicos aceptados; por lo tanto es necesaria una modelación del trabajo y energía no solo basada en la realidad observable; estos aportes se usan como base para afirmar que en la investigación hay deficiencia en la explicación que se da a las situaciones planteadas referentes a trabajo y energía; esta deficiencia en los modelos explicativos coincide con un bajo nivel argumentativo, esto se corrobora con los datos nombrados anteriormente.

Esto permitió identificar una serie de obstáculos relacionados con la concepción de trabajo y energía, específicamente en los niveles argumentativos de los estudiantes, por ejemplo. Los estudiantes mayoritariamente explican los conceptos de trabajo y energía de manera incoherente, dando en sus respuestas conceptos que no se concatenan entre sí y que por
tanto no permiten dar coherencia global a la situación que deban explicar. Además, un número significativo de estudiantes usa modelos explicativos que parten de su realidad observable y aparte de eso los usan deficientemente, lo que no les permite visualizar eficientemente estos conceptos y se dan algunas explicaciones basadas en modelos explicativos los cuales se sustentan desde lo observable.

Como lo indica la investigación de (Cardona y Tamayo, 2009) la precensia de datos y datos – conclusion, se evidencia como una expresion de la construcccion de evidencias que respaldan un determinado modelo. Dado que dichas evidencias emergieron de las experiencias o ejemplos de las interlocutoras, podría postularse que la experiencia personal, propia, cercana a la cotidianidad puede constituirse en el centro de la problematización en el aula de ciencias y en la generación de contextos de construcción de conocimiento. En la idea de modelizar la argumentacion en las aulas de ciencias, el modelo construido va más allá de construir una estructura argumentativa. Pone en evidencia la relación entre las prácticas discursivas y los modelos conceptuales y se constituye en un aporte para diseñar, monitorear y evaluar los procesos de enseñanza y de aprendizaje de las ciencias.
9. CONCLUSIONES

Para comenzar con las conclusiones generales, hay que tener en cuenta la pregunta ¿Cómo se relacionan los niveles argumentativos con los modelos explicativos de los conceptos de trabajo y energía en los estudiantes de grado décimo en la Institución educativa Nuestra señora de Belén?, que se formuló al inicio de la investigación. Así, para dar respuesta al interrogante se plantearon unos objetivos, de los cuales se concluye:

En cuanto al nivel argumentativo de los estudiantes, se evidencia un predominio del nivel 1 con un predominio mayor de las declaraciones y un número menor de declaraciones en nivel 2 que solo constituye un mínimo porcentaje; en este caso en sus respuestas los estudiantes presentan solo afirmaciones y aunque intentan dar apoyo a estas afirmaciones lo hacen solo con datos empíricos, sin usar justificaciones, en los pocos casos que llegan a usar una justificación, esta es débil.

En cuanto a los modelos explicativos para los conceptos de trabajo y energía, inicialmente no se caracterizan declaraciones en algún modelo que sea cercano al concepto científicamente aceptado, cabe mencionar que todos los modelos encontrados han sido nombrados de manera creativa por el investigador, ya que la literatura no reporta información acerca de estos modelos.

Para el concepto de trabajo el modelo más usado por los estudiantes fue el cotidiano con tres cuartas partes del total de las declaraciones categorizadas, dicho modelo es el más evidente e intuitivo, adicionalmente hay un porcentaje mínimo de las declaraciones en las que se hace referencia a otro modelo llamado esfuerzo donde se observa que los niveles explicativos de los estudiantes presentan una deficiente integración de contenido teórico, esto permite corroborar que un proceso de intervención en el cual se tengan en cuenta los modelos explicativos iniciales para detectar posibles obstáculos que sirvan de referencia para diseñar las actividades de intervención, contribuye a la movilización positiva de los modelos explicativos de los alumnos. Para el concepto de energía se encontraron dos modelos con una distribución porcentual un poco más estrecha, comparado con los porcentajes en los modelos de trabajo, el modelo vitalista con un porcentaje predominante sobre el modelo fuente, al igual que en el caso anterior son respuestas basadas en vivencia
propias nada cercanas a una definición científica, lo que nos conlleva a pensar en el hecho que un modelo mental intuitivo y basado en la realidad observable como el macroscópico limita la posibilidad argumentativa, ya que el estudiante carece de razones para defender afirmaciones diferentes a lo que su realidad le presenta, aunado esto a que al invitar a un estudiante a exponer sus razones de manera argumentada este va a buscar otras explicaciones a los fenómenos, lo que contribuye en gran medida a mejorar el cambio en sus modelos explicativos.

La rejilla de orientación para ubicar los niveles de argumentación de los estudiantes propuesta por Ruiz et al. (2015) fue una herramienta esencial durante el proceso, ya que facilitó la identificación de los elementos argumentativos propuestos por Toulmin (2007) en los argumentos de los estudiantes y posibilitó comprender la relación que tienen con los modelos explicativos.

Con relación a las estructuras argumentativas descritas un porcentaje amplio de las respuestas se encuentran en el nivel 1, donde se destaca la presencia de descripciones simples de la vivencia, se evidencia la ausencia de un componente que ha sido central en la teoría de la argumentación: la contra-argumentación. Ésta se expresa cuando existe la posibilidad de comparar y discernir, entre modelos o teorías, el grado de ajuste o aceptabilidad que tienen en un contexto particular. Lo anterior remite, nuevamente, a la pertinencia de incorporar en la enseñanza de las ciencias, su historia y epistemología. La historia, entendida como la manera como han sido construidos los modelos de la ciencia, como han sido falseados y reemplazados, y cuáles son los problemas del campo de conocimiento aún no resueltos y que se constituyen en fuente de nuevas hipótesis, discusiones y argumentaciones. Se trata aquí de la argumentación en sentido complejo, la que va más allá de una descripción simple de una vivencia y que requiere una modelización en el aula de clase vinculada al conocimiento de los procesos, métodos y discusiones que se han dado en el proceso socio-histórico de constitución de las ciencias.
10. RECOMENDACIONES

Teniendo en cuenta los resultados y las conclusiones que se tuvieron al finalizar la investigación surgieron algunas sugerencias que pueden ser tenidas en cuenta para próximos trabajos relacionados con los ejes tratados.

Elaborar instrumentos con preguntas que permitan identificar los modelos explicativos es una estrategia que resulta favorable en los diferentes niveles de educación, desde la básica primaria hasta la educación media y técnica, puesto que las respuestas que se obtienen se convierten en un insumo fundamental para reconocer los obstáculos del aprendizaje y de esta manera diseñar actividades que sean de tipo constructivista, lo cual permitirá que las prácticas de transmisión – recepción sean cambiadas por otras que favorezcan los procesos de enseñanza aprendizaje.

Realizar un rastreo histórico de los modelos explicativos de comunidades científicas resulta ser indispensable para reconocer las formas que han tenido dichas comunidades para explicar los fenómenos que ocurren en el universo. Así, se podrán abordar de manera más puntual los obstáculos que se identifican en los estudiantes, comprender sus modelos explicativos y, en consecuencia, acercarlos a los modelos científicos.

Diseñar e implementar actividades que promuevan la competencia argumentativa, puesto que permite identificar las fortalezas y las debilidades de los estudiantes en sus modelos explicativos, en lo actitudinal y emocional (Tamayo et al., 2011). Así mismo, permitir que el estudiante sea consciente de su proceso de aprendizaje facilitará un monitoreo, evaluación y regulación de sus desempeños (Sánchez et al, 2015).
11. REFERENCIAS


*Revista Electrónica de Investigación Educativa*, 13(2). 41-54. Recuperado de
https://redie.uabc.mx/redie/article/viewFile/282/444


http://nuestraesfera.cl/zoom/fuentes-de-energia-caracteristicas-y-funciones/

http://www.redalyc.org/pdf/1341/134129372005.pdf

http://www.cide.cl/documentos/el_modelo_argumentativo_JP.pdf


Signifados.com (s.f). Recuperado de https://www.significados.com/trabajo/


1. ¿Qué entiende por trabajo?
2. De las siguientes actividades sólo realiza trabajo: ¿Por qué?
   a) Un soldado presta guardia a la entrada del batallón durante 12 horas continuas. Todo ese tiempo está de pie y carga su pesado equipo.
   b) Transportar un bulto muy pesado sobre el hombro sobre una carretera horizontal
   c) Empujar una caja y desplazarla
   d) Atar una piedra a una cuerda y hacerla girar en un plano horizontal.
3.
Responde a estas preguntas. Explique el porqué de su respuesta

Dos personas suben hasta una altura de 4 m con respecto al piso, por una escalera, como lo muestra las figuras. Podemos afirmar:

a) Realiza mayor trabajo la persona de la Fig 1.
b) Las dos personas realizan igual trabajo.
c) Realiza mayor trabajo la persona de la Fig 2.
d) La persona en la Fig 2. No realiza trabajo.

4. El carro representado en la figura lleva una determinada velocidad. Al chocar con el tope es capaz, mediante un sistema de engranajes, de subir una determinada altura el peso que tenemos colocado en B. Describe el proceso, usando al menos una vez cada una, las palabras fuerza, energía, trabajo y potencia.

5. Señala en cuáles de las siguientes acciones se realiza un trabajo: argumenta tu respuesta.
   a) Un niño agarra con las manos un paquete y lo levanta desde el suelo hasta 1,5 m de altura
   b) Una estudiante sujeta con sus manos un libro muy pesado
   c) Una persona camina arrastrando el carrito de la compra
d) Un hombre apoya las manos en un camión aparcado y hace mucha fuerza para intentar moverlo, sin conseguirlo.

6. **Señala todas aquellas acciones que conlleven la realización de un trabajo desde el punto de vista físico**
   a) un operario sujetando una caja
   b) un levantador de pesas sujetando las pesas en su punto más alto
   c) Transportar la mochila desde tu casa al instituto

7. ¿Es posible realizar trabajo sobre un objeto que permanece en reposo? ¿Por qué?

8. ¿Qué entiendes por energía?

9. ¿Qué tipo de energía se relaciona estrechamente con una mayor potencialidad contaminante? Explique por qué

10. ¿En qué crees que se pueda medir la energía? Argumenta tu respuesta

11. ¿Qué es y cómo usamos la energía?

12. Observa con atención las siguientes imágenes y señala con una X DOS DE ELLAS que se relacionen más con la idea de lo que tu entiendes por ENERGÍA. Además, argumenta por qué las seleccionaste.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>5.</td>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
<td>8.</td>
<td>9.</td>
</tr>
</tbody>
</table>
14. Haz una lista de aquellas energías que se llaman renovables y de las que no lo son, da una breve descripción de cada una.
15. ¿Qué relación encuentras entre trabajo y energía? Justifica tu respuesta.