Simulación de interacciones de corto y largo alcance para nanoestructuras de manganitas tipo perovskitas empleando el método Monte Carlo

dc.contributor.advisorJiménez García, Francy Nellyspa
dc.contributor.advisorOrtíz Álvarez, Hugo Hernánspa
dc.contributor.authorMárquez Narváez, Carolinaspa
dc.date.accessioned2020-06-02T20:38:20Zspa
dc.date.available2020-06-02T20:38:20Zspa
dc.date.issued2019spa
dc.description.abstractActualmente, se reconoce en los materiales magnéticos una fuente para la fabricación y mejoramiento de dispositivos tecnológicos, lo que constituye un desafío desde el punto de vista científico para el entendimiento de sus propiedades. En este sentido, el método de simulación Monte Carlo ha mostrado ser eficaz, para la simulación de propiedades de materiales. La interacción dipolar magnética juega un papel importante en el comportamiento de los materiales magnéticos, es de largo alcance y computacionalmente costosa ya que el cálculo es sobre todos los pares de momentos magnéticos de la muestra. En este trabajo se implementaron modelos que incluyen interacciones de corto y largo alcance por el método de Monte Carlo para la simulación de propiedades magnéticas de estructuras cúbica dentro de las que caben las manganitas tipo perovskita. La descripción de la interacción dipolar magnética en capas delgadas se llevó a cabo sobre celdas de simulación replicadas periódicamente, para lo que se emplearon el método de los radios de corte, que es una aproximación, y el de las sumas de Ewald que es de convergencia rápida. En este trabajo se realizaron procesos de paralelización en CPU utilizando la librería OpenMP y GPU utilizando la librería OpenACC para reducir los tiempos de cómputo en las sumas de Ewald. Se lograron reducir los tiempos en cada prototipo implementado, primero optimizando el código, después paralelizando en CPU, finalmente y paralelizando en GPU. Se encontró que con el modelo básico implementado mediante las sumas de Ewald el costo computacional es cinco veces mayor al que se alcanzó con el modelo paralelizado en GPU.spa
dc.description.abstractengCurrently, magnetic materials are recognized as a source for the manufacture and improvement of technological devices, which constitutes a challenge from the scientific point of view for the understanding of their properties. In this sense, the Monte Carlo simulation method has proven to be effective for the simulation of material properties. The magnetic dipole interaction plays an important role in the behavior of magnetic materials, it is long-range and computationally expensive since the calculation is on all the pairs of magnetic moments of the sample. In this work, models that include short-range and long-range interactions were implemented by the Monte Carlo method for the simulation of magnetic properties of cubic structures within which perovskite-type manganites fit. The description of the magnetic dipole interaction in thin layers was carried out on simulation cells replicated periodically, for which the shear radii method, which is an approximation, and the Ewald sum method, which is of convergence, were used. fast. In this work, parallelization processes were carried out in CPU using the OpenMP library and GPU using the OpenACC library to reduce the computation times in the Ewald sums. It was possible to reduce the times in each implemented prototype, first optimizing the code, then parallelizing in CPU, finally and parallelizing in GPU. It was found that with the basic model implemented using Ewald sums, the computational cost is five times higher than that achieved with the parallelized model in GPU.eng
dc.formatapplication/pdfspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.autonoma.edu.co/handle/11182/1025spa
dc.language.isospaspa
dc.publisherUniversidad Autónoma de Manizalesspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeManizalesspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessRightshttp://purl.org/coar/access_right/c_abf2spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourceUniversidad Autónoma de Manizalesspa
dc.sourceRepoUAM-UAMspa
dc.subject.keywordMagnetic materialseng
dc.subject.keywordPerovskite-type manganiteseng
dc.subject.keywordHeisenberg modeleng
dc.subject.keywordEwald sumseng
dc.subject.proposalMateriales magnéticosspa
dc.subject.proposalManganitas tipo perovskitaspa
dc.subject.proposalModelo de Heisenbergspa
dc.subject.proposalSumas de Ewaldspa
dc.titleSimulación de interacciones de corto y largo alcance para nanoestructuras de manganitas tipo perovskitas empleando el método Monte Carlospa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
oaire.accessRightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
thesis.degree.disciplineFacultad de ingenieria. Maestría en Ingenieríaspa
thesis.degree.grantorUniversidad Autónoma de Manizalesspa
thesis.degree.levelMaestríaspa
thesis.degree.nameMagister en Ingenieríaspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Simulación_interacciones_corto_largo_alcance_nanoestructuras_manganitas_tipo_perovskitas_empleando_método_Monte_Carlo.pdf
Tamaño:
2.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Texto completo
Cargando...
Miniatura
Nombre:
Auto_simulación_interacciones_corto_largo_alcance_nanoestructuras_manganitas_tipo_perovskitas_empleando_método_Monte_Carlo.pdf
Tamaño:
38.98 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: