Facultad de Ingeniería
URI permanente para esta comunidadhttps://hdl.handle.net/11182/27
Examinar
Examinando Facultad de Ingeniería por Materia "Agro-industrial Wastes."
Mostrando 1 - 1 de 1
- Resultados por página
- Opciones de ordenación
Ítem Desarrollo de un biopolímero celulósico a partir de pergamino de café reforzado con nanopartículas de sílice y sus potenciales aplicaciones(Universidad Autónoma de Manizales, 2022) Henao Rodríguez, Juan Esteban; Londoño Calderón, César Leandro; Trujillo de los Ríos, Efraín EduardoLa contaminación por plásticos es actualmente una de las principales problemáticas ambientales en el mundo. Debido a su naturaleza no biodegradable estos se acumulan en el ambiente y provocan serias alteraciones en los ecosistemas. Por tanto, es preciso desarrollar materiales alternativos a los plásticos tradicionales, y es aquí donde los residuos agroindustriales cobran una notoria importancia. Este tipo de residuos son generados como resultado del cultivo y procesamiento de los bienes producidos en actividades agropecuarias, y por lo general suelen ser desperdiciados, desaprovechados, y carecen de valor comercial. En ese sentido, se planteó el desarrollo de un biopolímero a partir del pergamino de café, mediante la optimización de los procesos de: (a) la extracción química de las microfibras de celulosa de este material, (b) la incorporación de dichas fibras en matrices de almidón de yuca, (c) la incorporación de nanopartículas de sílice obtenidas de la cascarilla del arroz en el polímero previamente mencionado, y (d) la caracterización morfológica, estructural, óptica, mecánica, y de propiedades de barrera de los materiales obtenidos y cada una de las fases del proceso. De ello se obtuvo que el pergamino debe ser tratado en tres hidrólisis: (1) HNO3 ac. 5%(v/v), (2) NaOH ac. 3%(m/v), y (3) NaClO:CH3COOH:H2O al (2:2:96)%m, durante 120 min, 45 min y 30 min respectivamente, a temperatura y agitación constante de 80°C y 1000 r/min, a calentamiento por reflujo. Las películas desarrolladas mostraron un aumento considerable en el esfuerzo máximo y la elongación a la ruptura soportados con la incorporación de las microfibras de celulosa (173% y 259%, respectivamente) y de las nanopartículas de sílice (94% y 120%, respectivamente). Finalmente, los materiales desarrollados a lo largo del trabajo fueron analizados y caracterizados por técnicas SEM, XRD, TGA, UV-Vis, UTM y FTIR, en los que se verificó la evolución del material a través del tiempo.